日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
14.已知函數f(x)=ax2-ax-xlnx,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點x0,且e-2<f(x0)<2-2

分析 (1)通過分析可知f(x)≥0等價于h(x)=ax-a-lnx≥0,進而利用h′(x)=a-$\frac{1}{x}$可得h(x)min=h($\frac{1}{a}$),從而可得結論;
(2)通過(1)可知f(x)=x2-x-xlnx,記t(x)=f′(x)=2x-2-lnx,解不等式可知t(x)min=t($\frac{1}{2}$)=ln2-1<0,從而可知f′(x)=0存在兩根x0,x2,利用f(x)必存在唯一極大值點x0及x0<$\frac{1}{2}$可知f(x0)<$\frac{1}{4}$,另一方面可知f(x0)>f($\frac{1}{e}$)=$\frac{1}{{e}^{2}}$.

解答 (1)解:因為f(x)=ax2-ax-xlnx=x(ax-a-lnx)(x>0),
則f(x)≥0等價于h(x)=ax-a-lnx≥0,求導可知h′(x)=a-$\frac{1}{x}$.
則當a≤0時h′(x)<0,即y=h(x)在(0,+∞)上單調遞減,
所以當x0>1時,h(x0)<h(1)=0,矛盾,故a>0.
因為當0<x<$\frac{1}{a}$時h′(x)<0、當x>$\frac{1}{a}$時h′(x)>0,
所以h(x)min=h($\frac{1}{a}$),
又因為h(1)=a-a-ln1=0,
所以$\frac{1}{a}$=1,解得a=1;
(2)證明:由(1)可知f(x)=x2-x-xlnx,f′(x)=2x-2-lnx,
令f′(x)=0,可得2x-2-lnx=0,記t(x)=2x-2-lnx,則t′(x)=2-$\frac{1}{x}$,
令t′(x)=0,解得:x=$\frac{1}{2}$,
所以t(x)在區間(0,$\frac{1}{2}$)上單調遞減,在($\frac{1}{2}$,+∞)上單調遞增,
所以t(x)min=t($\frac{1}{2}$)=ln2-1<0,從而t(x)=0有解,即f′(x)=0存在兩根x0,x2
且不妨設f′(x)在(0,x0)上為正、在(x0,x2)上為負、在(x2,+∞)上為正,
所以f(x)必存在唯一極大值點x0,且2x0-2-lnx0=0,
所以f(x0)=${{x}_{0}}^{2}$-x0-x0lnx0=${{x}_{0}}^{2}$-x0+2x0-2${{x}_{0}}^{2}$=x0-${{x}_{0}}^{2}$,
由x0<$\frac{1}{2}$可知f(x0)<(x0-${{x}_{0}}^{2}$)max=-$\frac{1}{{2}^{2}}$+$\frac{1}{2}$=$\frac{1}{4}$;
由f′($\frac{1}{e}$)<0可知x0<$\frac{1}{e}$<$\frac{1}{2}$,
所以f(x)在(0,x0)上單調遞增,在(x0,$\frac{1}{e}$)上單調遞減,
所以f(x0)>f($\frac{1}{e}$)=$\frac{1}{{e}^{2}}$;
綜上所述,f(x)存在唯一的極大值點x0,且e-2<f(x0)<2-2

點評 本題考查利用導數研究函數的極值,考查運算求解能力,考查轉化思想,注意解題方法的積累,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.如圖是一個算法流程圖:若輸入x的值為$\frac{1}{16}$,則輸出y的值是-2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.執行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數N的最小值為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},則B=(  )
A.{1,-3}B.{1,0}C.{1,3}D.{1,5}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.函數f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$(x∈[0,$\frac{π}{2}$])的最大值是1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.若曲線y=a|x|與y=x+a有兩個公共點,則a的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.某幾何體的三視圖如圖所示,則該幾何體的體積$\frac{75}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.若將函數y=2cos(2x-$\frac{π}{3}$)的圖象向右平移$\frac{1}{4}$個周期后,所得圖象對應的函數為(  )
A.$y=2sin(2x-\frac{π}{4})$B.$y=2sin(2x-\frac{π}{3})$C.$y=2sin(2x+\frac{π}{4})$D.$y=2sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(1)M為曲線C1上的動點,點P在線段OM上,且滿足|OM|•|OP|=16,求點P的軌跡C2的直角坐標方程;
(2)設點A的極坐標為(2,$\frac{π}{3}$),點B在曲線C2上,求△OAB面積的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 伊人爱爱网| 美女福利视频网站 | 欧美18免费视频 | 黄色小视频在线免费观看 | 欧美视频一区 | 成人av综合 | 色黄视频在线观看 | 国产99页| 日韩欧美国产精品 | 国产欧美精品区一区二区三区 | 国产第一二区 | 这里只有精品在线视频观看 | 免费视频一区 | 亚洲欧洲一区二区三区 | 国产精品久久久久久吹潮 | 亚洲 国产 另类 精品 专区 | 欧美一区精品 | 国产欧美一区二区精品性色 | 欧美日韩不卡合集视频 | 91视频国产区 | 国产第一亚洲 | а天堂中文最新一区二区三区 | 美日韩免费视频 | 日韩国产欧美视频 | 国产一区在线免费观看 | 亚洲不卡网站 | 瑟瑟网站在线观看 | 亚洲色图欧美激情 | 日韩一区二区在线免费观看 | 日本视频一区二区 | 久久免费精品 | 激情一区二区 | 成年人福利 | 欧美日韩精品 | 91亚洲精品乱码久久久久久蜜桃 | 欧美一区二区三区成人 | 欧美在线三级 | 99视频免费 | 久久亚洲综合 | 伊人网视频 | 国产精品成人国产乱一区 |