日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
13.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函數f(x)極值;
(2)求g(x)單調區間,
(3)求證:x>0時,不等式g′(x)≥1+lnx.

分析 (1)求出導數,令它大于0,得增區間,令小于0,得減區間,判斷極小值和極大值;
(2)寫出g(x)的表達式,求導數,得到g′(x)=x(ex+1-ex),令y=ex+1-ex,應用導數證明y>0恒成立,再解不等式g′(x)>0,g′(x)<0求出單調區間;
(3)當x>0時,令h(x)=1+lnx+ex2-x-exx,求出導數h′(x),當x=1時,h′(x)=0,由(Ⅱ)得,ex-ex≥0,討論當x>1時,當0<x<1時,導數的符號,從而得到h(x)的最大值,即可得證.

解答 解:(1)函數f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,
f′(x)=x-ex2=x(1-ex),
f′(x)>0得0<x<$\frac{1}{e}$;f′(x)<0得x>$\frac{1}{e}$或x<0.
則f(x)在x=0處取極小值,且為f(0)=0,
f(x)在x=$\frac{1}{e}$處取極大值,且為f($\frac{1}{e}$)=$\frac{1}{{6e}^{2}}$.
(2)g(x)=f(x)+ex(x-1)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3+ex(x-1),
g′(x)=x-ex2+ex(x-1)+ex,
則g′(x)=x(ex+1-ex),令y=ex+1-ex,則y′=ex-e,y′>0,得x>1,
y′<0,得x<1,則x=1取極小,也是最小,
則y≥1.即ex+1-ex>0恒成立,
則g′(x)>0得x>0;g′(x)<0得x<0.
故g(x)的增區間為(0,+∞),減區間為(-∞,0).
(3)證明:當x>0時,1+lnx-g′(x)=1+lnx+ex2-x-exx,
令h(x)=1+lnx+ex2-x-exx,
h′(x)=$\frac{1}{x}$+2ex-1-exx-ex
當x=1時,h′(x)=0,由(Ⅱ)得,ex-ex≥0,
當x>1時,h′(x)<0,當0<x<1時,h′(x)>0,
故x=1為極大值,也為最大值,且為h(1)=0.
故當x>0時,h(x)≤h(1),即有h(x)≤0,
故當x>0時,1+lnx-g′(x)≤0,即g′(x)≥1+lnx.

點評 本題考查導數的應用:求單調區間、求極值,求最值,考查構造函數證明不等式恒成立問題,轉化為求函數的最值問題,應用導數求解,本題屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.2002年在北京召開的國際數學家大會,會標是以我國古代數學家趙爽的弦圖為基礎設計的.弦圖是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么sin2θ的值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{23}{24}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.若函數y=2+ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]的最大值與最小值分別為M,m,則M+m=(  )
A.2B.-4C.0D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.“tanx>0”是“sin2x>0“的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右焦點分別為F1,F2,離心率為$\frac{{\sqrt{3}}}{2}$,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓的標準方程;
(2)設P為橢圓上一點,若∠PF1F2=$\frac{5π}{6}$,求△PF1F2的面積;
(3)若P為橢圓上一點,且∠F1PF2為鈍角,求P點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.下列說法正確的個數有( 。
(1)三角形、梯形一定是平面圖形;
(2)若四邊形的兩條對角線相交于一點,則該四邊形是平面圖形;
(3)三條平行線最多可確定三個平面;
(4)平面α和β相交,它們只有有限個公共點;
(5)若A,B,C,D四個點既在平面α內,又在平面β內,則這兩平面重合.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知A,B∈(0,π),那么“A>B”是“cos2A<cos2B”的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知m,n∈R,f(x)=x2-mnx.
(1)當n=1時,解關于x的不等式:f(x)>2m2;
(2)若m>0,n>0,且m+n=1,證明:$f(\frac{1}{m})+f(\frac{1}{n})≥7$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知f(x)是一次函數,且滿足3f(x+1)-2f(x-1)=2x+10,求f(x)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲国产精品麻豆 | 春色av | 999这里只有是极品 欧洲一区二区三区免费视频 | 久久99精品久久久久久琪琪 | 91亚洲高清 | 免费日韩| 国产精品国产三级国产普通话蜜臀 | av免费在线观看网站 | 亚洲一级免费观看 | 国产精品久久久久国产a级 一区免费在线观看 | 青青成人| 在线二区| 欧美一区二区大片 | 欧美成人一区二区三区 | 日本高清视频一区二区三区 | www.国产一区 | 亚洲一区欧美日韩 | 日韩一区在线观看视频 | 国产伦精品一区二区三区高清 | 久久国| 日韩欧美在线播放 | 国产精品乱码一区二区三区 | 爱啪导航一精品导航站 | 国产精品免费观看 | 亚洲欧美一区二区三区久久 | 中文资源在线观看 | 精品国产999 | 午夜影院在线观看视频 | 麻豆高清免费国产一区 | 久久久久久久久久久久国产精品 | 欧美三区 | 蜜臀av性久久久久蜜臀aⅴ流畅 | 欧美中文字幕在线 | 999热在线| 精品国产一区在线 | 国产精品一区二区三区av | 91伦理片 | 亚洲精品国产第一综合99久久 | 国产精品视频男人的天堂 | 国内精品久久久久久影视8 久久亚洲精品国产一区最新章节 | 日韩欧美国产一区二区三区 |