日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.已知函數f(x)=$|\begin{array}{l}{\sqrt{3}co{s}^{2}x}&{-sinx}\\{cosx}&{1}\end{array}|$.
(1)當x∈[0,$\frac{π}{2}$]時,求f(x)的值域;
(2)已知△ABC的內角A,B,C的對邊分別為a,b,c,若f($\frac{A}{2}$)=$\sqrt{3}$,a=4,b+c=5,求△ABC的面積.

分析 (1)由已知利用行列式的計算,三角函數恒等變換的應用化簡可得函數解析式f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,結合范圍2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],利用正弦函數的性質即可得解值域.
(2)由已知可求sin(A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,結合范圍A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),可得A=$\frac{π}{3}$,由余弦定理解得:bc=3,利用三角形面積公式即可計算得解.

解答 (本題滿分為14分,第1小題滿分為6分,第2小題滿分為8分)
解:(1)∵f(x)=$|\begin{array}{l}{\sqrt{3}co{s}^{2}x}&{-sinx}\\{cosx}&{1}\end{array}|$=$\sqrt{3}$cos2x+sinxcosx=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∵x∈[0,$\frac{π}{2}$],2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],可得:f(x)=sin(2x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$∈[0,1+$\frac{\sqrt{3}}{2}$].
(2)∵f($\frac{A}{2}$)=sin(A+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,可得:sin(A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∵A∈(0,π),A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),可得:A+$\frac{π}{3}$=$\frac{2π}{3}$,解得:A=$\frac{π}{3}$.
∵a=4,b+c=5,
∴由余弦定理a2=b2+c2-2bccosA,可得:16=b2+c2-bc=(b+c)2-3bc=25-3bc,解得:bc=3,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×$3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.

點評 本題主要考查了行列式的計算,三角函數恒等變換的應用,正弦函數的圖象和性質,余弦定理,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.試用集合A,B的交集、并集、補集表示圖中陰影部分所表示的集合(  )
A.UBB.A∩(∁UB)C.A∪(∁UB)D.U(A∩B)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),左右焦點分別為F1,F2,C的離心率e=$\frac{{\sqrt{3}}}{2}$,且過P($\sqrt{3},\frac{1}{2}$)點
(1)求橢圓C的方程;
(2)若Q點在橢圓C上,且$∠Q{F_1}F_2^{\;}$=30°,求△QF1F2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.若-$\frac{π}{2}$<a<$\frac{π}{2}$,sinα=$\frac{3}{5}$,則cot2α=$\frac{7}{24}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設無窮等比數列{an}的首項為a1,公比為q,前n項和為Sn,則“a1+q=1”是“$\underset{lim}{n→∞}$Sn=1”成立(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知函數f(x)是二次函數,以下4種說法:
①對于任意的非零實數m,n,p,關于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是{1,2};
②對于任意的非零實數m,n,p,關于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是{1,4};
③對于任意的非零實數m,n,p,關于x的方程m|f(x)|2+n|f(x)|+p=0的解集都不可能是{1,2,3,4}

④對于任意的非零實數m,n,p,關于x的方程m|f(x)|2+n|f(x)|+p=0的解集都不可能是{1,4,16,64}.
正確的是①②③.(寫出所有正確的代號)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.若4x+4-x=$\frac{10}{3}$,則xlog34=±1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知圓心(2,-3),一條直徑的兩個端點恰好在兩坐標軸上,求這個圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.一商船行至索馬里海域時,遭到海盜的追擊,隨即發出求救信號.正在該海域執行護航任務的海軍“黃山”艦在A處獲悉后,即測出該商船在方位角為45°距離10海里的C處,并沿方位角為105°的方向,以9海里/時的速度航行.“黃山”艦立即以21海里/時的速度前去營救.如圖所示,求“黃山”艦靠近商船所需要的最少時間及所經過的路程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品乱码一区二区三区 | 日本一区视频在线观看 | 伊人爱爱网 | 亚洲欧美国产一区二区三区 | 成人一区二区在线 | 日本不卡网站 | 久久一区二区三区四区 | 亚洲日韩欧美一区二区在线 | 国产精品日韩一区二区 | 欧美日本一区二区三区 | 中国av在线 | 91一区| 欧美一级艳片视频免费观看 | av在线免费播放 | 少妇一区二区三区毛片免费下载看 | 日韩亚洲精品视频 | 日本黄色影片在线观看 | 中文字幕亚洲在线 | 国产在线二区 | 午夜精品久久久久久久久久久久久 | 亚洲网站在线播放 | 国产在线视频网站 | 日韩精品第一页 | 亚洲精品久久久久avwww潮水 | 日韩视频区| 国产激情在线观看视频 | 久草新免费 | 黄色免费看网站 | 日韩a电影 | 一区二区三区精品视频 | 精品欧美一区二区三区久久久 | 精品在线免费播放 | 亚洲天堂色2017 | 无码少妇一区二区三区 | 国产男女免费完整视频 | 成人免费黄色小视频 | 免费看黄网址 | 国产精品99精品久久免费 | av男人电影天堂 | 日韩免费高清视频 | 午夜私人影院在线观看 |