日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.已知$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

分析 (1)由$tan2θ=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.利用二倍角公式即可出tanθ的值;
(2)根據tanθ的值求出sinθ和cosθ,利用二倍角和和與差的公式化簡可求出$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$的值.

解答 解:(1)由tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}=-2\sqrt{2}$,$θ∈(\frac{π}{4},\frac{π}{2})$.
可得:$\sqrt{2}$tan2θ-tanθ-$\sqrt{2}$=0,
∵$θ∈(\frac{π}{4},\frac{π}{2})$.
∴tanθ=$\sqrt{2}$.
(2)由(1)可知tanθ=$\sqrt{2}$,即$\frac{sinθ}{cosθ}=\sqrt{2}$,sin2θ+cos2θ=1,
可得:sinθ=$\frac{\sqrt{6}}{3}$,cosθ=$\frac{\sqrt{3}}{3}$.
那么$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{{\sqrt{2}sin(\frac{π}{4}+θ)}}$=$\frac{cosθ-sinθ}{cosθ+sinθ}$=$\frac{\frac{\sqrt{3}}{3}-\frac{\sqrt{6}}{3}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{6}}{3}}$=2$\sqrt{2}-3$.

點評 本題考查了同角三角函數的關系式的計算和二倍角公式的運用.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.2017年省內事業單位面向社會公開招聘工作人員,為保證公平競爭,報名者需要參加筆試和面試兩部分,且要求筆試成績必須大于或等于90分的才有資格參加面試,90分以下(不含90分)則被淘汰.現有2000名競聘者參加筆試,參加筆試的成績按區間[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其頻率分布直方圖如下圖所示(頻率分布直方圖有污損),但是知道參加面試的人數為500,且筆試成績在的人數為1440.
(1)根據頻率分布直方圖,估算競聘者參加筆試的平均成績;
(2)若在面試過程中每人最多有5次選題答題的機會,累計答題或答錯3題即終止答題.答對3題者方可參加復賽.已知面試者甲答對每一個問題的概率都相同,并且相互之間沒有影響.若他連續三次答題中答對一次的概率為$\frac{9}{64}$,求面試者甲答題個數X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若根據10名兒童的年齡x(歲)與體重y(千克)數據用最小二乘法得到用年齡預測體重的回歸方程$\hat y=2x+7$,已知這10名兒童的年齡分別是2,3,3,5,2,6,7,3,4,5,則這10名兒童的平均體重是( 。
A.15千克B.16千克C.17千克D.18千克

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若MP和OM分別是角$\frac{7π}{6}$的正選線和余弦線,則( 。
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.對于函數$f(x)=\sqrt{2}(sinx+cosx)$,給出下列四個命題:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函數f(x)的圖象關于直線$x=-\frac{3π}{4}$對稱;
③存在φ∈R,使函數f(x+ϕ)的圖象關于坐標原點成中心對稱;
④函數f(x)的圖象向左平移$\frac{π}{4}$就能得到y=-2cosx的圖象.
其中正確命題的序號是②③.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.把十進制數132轉換成二進制數是10000100.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知P=$\{0,1,\sqrt{2}\}$,Q={y|y=cosθ,θ∈R},則P∩Q=( 。
A.ϕB.{0}C.{0,1}D.$\{0,1,\sqrt{2}\}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.從某企業生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量結果得如下頻數分布表:
質量指標值分組[75,85)[85,95)[95,105)[105,115)[115,125)
頻數62638228
(1)作出這些數據的頻數分布直方圖;
(2)估計這種產品質量指標值的平均數及方差(同一組中的數據用該組區間的中間值來代表這種產品質量的指標值);
(3)根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“質量指標值不低于95的產品至少要占全部產品的85%”的規定?

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數f(x)=2sin(ωx+ϕ)-1(ω>0,|φ|<π)的一個零點是$x=\frac{π}{3}$,其圖象上一條對稱軸方程為$x=-\frac{π}{6}$,則當ω取最小值時,下列說法正確的是①③.(填寫所有正確說法的序號)
①當$x∈[-\frac{4π}{3},-\frac{π}{6}]$時,函數f(x)單調遞增;
②當$x∈[-\frac{π}{6},\frac{5π}{3}]$時,函數f(x)單調遞減;
③函數f(x)的圖象關于點$(\frac{7π}{12},-1)$對稱;
④函數f(x)的圖象關于直線$x=\frac{-4π}{3}$對稱.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91久久国产综合久久蜜月精品 | 亚洲精品一区二区三区四区高清 | 色香蕉网站 | 国产午夜精品久久 | 国产亚洲精品精品国产亚洲综合 | 色婷婷综合久久久久中文一区二 | 爱爱视频免费在线观看 | 国产成人在线播放 | 久久久久国产一区二区三区 | 91精品久久久久久久久久入口 | 欧美午夜影院 | 久久99深爱久久99精品 | 成人av网站在线 | 手机看片福利视频 | 国产欧美在线观看 | 每日更新av | 欧美自拍视频在线观看 | 天天草天天色 | 欧洲美女7788成人免费视频 | 精品一区免费观看 | 欧美视频在线播放 | 精品一二三区 | 国产一区免费在线观看 | 亚洲精品中文字幕 | 久久在线 | 性色av网| 日本在线高清 | 久久久久久久久免费视频 | 久久久999精品视频 成人激情在线 | 免费看a| 精品一区二区三区国产 | 日韩精品一区二区三区 | 久久精品91久久久久久再现 | 久久精品视频网站 | 精品一区二区三区在线观看视频 | 亚洲一区二区精品视频 | 一区二区三区视频在线 | 亚洲精品日韩色噜噜久久五月 | 国产永久免费 | 成人网址在线观看 | 国产一区91|