分析 (1)由題意得S=${∫}_{0}^{π}f(x)dx$=$\frac{1}{2}$π2+π+2,解得a的值;
(2)求導,利用導數法分析函數的單調性,進而可得函數f(x)單調區間及最值;
(3)作出函數f(x)=sinx-cosx+x+1,x∈[0,2π]的簡圖,數形結合可得函數g(x)=f(x)-m在區間x∈[0,2π]上的零點個數.
解答 解:(1)由題意,知函數f(x)=sinx-cosx+ax+1,x∈[0,2π]的圖象
與直線x=0,x=π,y=0所圍成的封閉圖形的面積為S=${∫}_{0}^{π}f(x)dx$=$\frac{1}{2}$π2+π+2,
即(-cosx-sinx+$\frac{1}{2}{ax}^{2}$+x)${|}_{0}^{π}$=$\frac{1}{2}$π2+π+2,
即($\frac{1}{2}$aπ2+π+1)-(-1)=$\frac{1}{2}$π2+π+2,
解得:a=1,
∴f(x)=sinx-cosx+x+1,x∈[0,2π].
(2)對函數f(x)=sinx-cosx+x+1,x∈[0,2π]求導,
得f′(x)=cosx+sinx+1=$\sqrt{2}$sin(x+$\frac{π}{4}$)+1,x∈[0,2π],
令f′(x)=0,則sin(x+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,
又x∈[0,2π],則x=π或x=$\frac{3π}{2}$,列表:
x | [0,π) | π | (π,$\frac{3π}{2}$) | $\frac{3π}{2}$ | ($\frac{3π}{2}$,2π] |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調遞增 | 極大 | 單調遞減 | 極小 | 單調遞增 |
點評 本題考查的知識點是定積分,利用導數研究函數的單調性,利用導數研究函數的最值,函數的零點,難度中檔.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{9}{4}$ | B. | $\frac{4\sqrt{2}}{9}$ | C. | -$\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,1) | B. | (0,3] | C. | (1,3) | D. | [1,3] |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (x1-x2)[f(x1)-f(x2)]<0 | B. | f($\frac{{x}_{1}+{x}_{2}}{2}$)<f($\frac{f({x}_{1})+f({x}_{2})}{2}$) | ||
C. | x1f(x2)>x2f(x1) | D. | x2f(x2)>x1f(x1) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com