分析 (1)求出導函數,根據導函數判斷函數的單調性,得出函數的最值,進而求出a的范圍;
(2)求出導函數,根據極值點判斷函數的零點位置,對零點分類討論,構造函數,利用放縮法,均值定理證明結論成立.
解答 解:(1)f(x)=$\frac{lnx+ax+1}{x}$=$\frac{lnx}{x}$+a+$\frac{1}{x}$.
f''(x)=-$\frac{lnx}{{x}^{2}}$,
∴f(x)在(0,l)上遞增,(1,+∞)上遞減,
∴f(x)≤f(1)=a+1,
∴a+1<0,∴a<-1;
(2)證明:由(1)知,兩個不同零點x1∈(0,1),x2∈(1,+∞),
若x2∈(1,2),則2-x2∈(0,1),
設g(x)=f(x)-f(2-x)=$\frac{lnx}{x}$+$\frac{1}{x}$-$\frac{ln(2-x)}{2-x}$-$\frac{1}{2-x}$,
則當x∈(0,1)時,
g'(x)=-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{(2-x)}^{2}}$>-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{x}^{2}}$=-$\frac{ln({-(x-1)}^{2}+1]}{{x}^{2}}$>0,
∴g(x)在(0,1)上遞增,
∴g(x)<g(1)=0,
∴f(x)<f(2-x),
∴f(2-x1)>f(x1)=f(x2),
∴(2-x1)<x2,∴2<x1+x2,
若x2∈(2,+∞),可知2<x1+x2,顯然成立,
又$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+x2≥2$\sqrt{\frac{{{x}_{1}}^{2}}{{x}_{2}}{•x}_{2}}$=2x1,同理可得$\frac{{{x}_{2}}^{2}}{{x}_{1}}$+x1≥2x2,
以上兩式相加得:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$+x1+x2≥2(x1+x2),
故:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$≥(x1+x2)>2.
點評 本題考查了導函數的應用,最值問題的轉化思想,難點是對參數的分類討論和均值定理的應用.
科目:高中數學 來源: 題型:選擇題
A. | p∧(?q) | B. | (?p)∧(?q) | C. | (?p)∧q | D. | p∧q |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
類別 | 達到精品級 | 未達到精品級 | 總計 |
高級技工 | 22 | 6 | 28 |
中級技工 | 10 | 10 | 20 |
總計 | 32 | 16 | 48 |
$\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$ | $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$ | $\sum_{i=1}^{6}{n}_{i}$ 2 | $\sum_{i=1}^{6}{t}_{i}$ 2 | $\sum_{i=1}^{6}{n}_{i}{t}_{i}$ | $\sum_{i=1}^{6}$(ni-$\overline{n}$)2 | $\sum_{i=1}^{6}$(ti-$\overline{t}$)2 | $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) |
4.5 | 4.125 | 139 | 109.562 | 112.75 | 17.5 | 7.468 | 11.375 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com