日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.如圖,由曲線y=x2+4與直線y=5x所圍成平面圖形的面積.

分析 首先利用定積分表示封閉圖形 底面積,然后計算定積分.

解答 解:由曲線y=x2+4與直線y=5x所圍成平面圖形的面積為${∫}_{1}^{4}(5x-{x}^{2}-4)dx$=($\frac{5}{2}{x}^{2}-\frac{1}{3}{x}^{3}-4x$)|${\;}_{1}^{4}$=$\frac{27}{6}$=$\frac{9}{2}$;

點評 本題考查了定積分的幾何意義的運用;關鍵是正確利用定積分表示面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.已知復數z滿足z=$\frac{5+2i}{2-5i}$(i是虛數單位),則z2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知f(x)是定義在[m,n]上的函數,記F(x)=f(x)-(ax+b),|F(x)|的最大值為M(a,b).若存在m≤x1<x2<x3≤n,滿足|F(x1)|=M(a,b),F(x2)=-F(x1).F(x3)=F(x1),則稱一次函數y=ax+b是f(x)的“逼近函數”,此時的M(a,b)稱為f(x)在[m,n]上的“逼近確界”.
(1)驗證:y=4x-1是g(x)=2x2,x∈[0,2]的“逼近函數”;
(2)已知f(x)=$\sqrt{x}$,x∈[0,4],F(0)=F(4)=-M(a,b).若y=ax+b是f(x)的“逼近函數”,求a,b的值;
(3)已知f(x)=$\sqrt{x}$,x∈[0,4]的逼近確界為$\frac{1}{4}$,求證:對任意常數a,b,M(a,b)≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.求函數$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及對應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知拋物線的頂點在坐標原點,對稱軸是x軸,頂點與焦點的距離等于4.
(1)求拋物線的方程
(2)若等邊三角形的一個頂點位于原點,另外兩個頂點在拋物線上,求這個等邊三角形的邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若a<0<b,且$\frac{1}{a}>-\frac{1}$,則下列不等式:①|b|>|a|;②a+b>0;③$\frac{a}+\frac{a}<-2$;④$a>2b-\frac{a^2}$中,正確的不等式有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知隨機變量X~B(9,$\frac{2}{3}$),Y=2X-1,則D(Y)=8.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.若a>0,b>0,且2a+b=1,則2$\sqrt{ab}$-4a2-b2的最大值是$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=cos(x+ϕ)(-π<ϕ<0),g(x)=f(x)+f'(x)是偶函數.
(Ⅰ)求ϕ的值;
(Ⅱ)求函數y=f(x)•g(x)在區間$[{0,\frac{π}{2}}]$的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国内自拍视频在线观看 | 天堂精品一区 | 国产在线激情 | 欧美日韩视频在线观看一区 | 午夜毛片 | 日本免费一区二区三区视频 | 99精品电影 | 日韩久草| 欧美日韩三区 | 中文字幕av一区二区三区 | 亚洲女人的天堂 | 色爱区综合五月激情 | 91视频免费网站 | 欧美亚洲视频在线观看 | 免费看的av | 久久久www | 日韩免费一区二区 | 不卡日本| 欧美日韩h| 日本日韩中文字幕 | 国产一区在线观看视频 | 中文字字幕在线 | 中文字幕在线一区观看 | 美女福利视频网站 | 日本少妇xxxx软件 | 亚洲欧洲无码一区二区三区 | 四虎影视网址 | 亚洲自拍一区在线 | 久久久国产一区二区三区 | 日本黄色免费 | 午夜精品久久久久99蜜 | 久久一级| 日韩欧美国产视频 | 欧美激情欧美激情在线五月 | 欧美成人精品一区二区男人看 | 亚洲 欧美 另类 综合 偷拍 | 91精品国产色综合久久不卡98口 | 精品久久久久久亚洲精品 | k8久久久一区二区三区 | 综合久| 日韩免费网站 |