分析 利用二倍角公式對已知化簡可得,an=n2(sin2$\frac{nπ}{3}$-cos2$\frac{nπ}{3}$)=-n2cos$\frac{2nπ}{3}$,然后代入到求和公式中可得,S30=(12cos$\frac{2π}{3}$+22cos$\frac{4π}{3}$+32cos2π+…+302cos20π),求出特殊角的三角函數值之后,利用平方差公式分組求和,根據等差數列前n項和公式,即可求解
解答 解:∵an=n2(sin2$\frac{nπ}{3}$-cos2$\frac{nπ}{3}$)=-n2cos$\frac{2nπ}{3}$,
∴S30=(12cos$\frac{2π}{3}$+22cos$\frac{4π}{3}$+32cos2π+…+302cos20π),
=-(-$\frac{1}{2}$×1-$\frac{1}{2}$×22+1×32+…-$\frac{1}{2}$×28-$\frac{1}{2}$×292+1×302),
=-{-$\frac{1}{2}$[(12-32)+(42-62)+…+(282-302)+(22-32)+(52-62)+…+(292-302)]},
=$\frac{1}{2}$[-2(4+10+16…+58)-(5+11+17+…+59)],
=$\frac{1}{2}$[-2×$\frac{4+58}{2}$×10-$\frac{5+59}{2}$×10],
=-470,
故答案為:-470.
點評 本題主要考查了二倍角的余弦公式、分組求和方法的應用,考查等差數列前n項和公式,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,1) | B. | (0,1) | C. | (1,2) | D. | (0,2) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com