日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
12.某工廠的污水處理程序如下:原始污水必先經過A系統處理,處理后的污水(A級水)達到環保標準(簡稱達標)的概率為p(0<p<1).經化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統處理后直接排放.
某廠現有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數的期望值越小,則方案的越“優”.
(Ⅰ) 若$p=\frac{2}{{\sqrt{5}}}$,求2個A級水樣本混合化驗結果不達標的概率;
(Ⅱ) 若$p=\frac{2}{{\sqrt{5}}}$,現有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優”?
(Ⅲ) 若“方案三”比“方案四”更“優”,求p的取值范圍.

分析 (Ⅰ)計算2個A級混合樣本達標的概率,再根據對立事件原理求得它們不達標的概率;
(II)計算方案一:逐個檢測,檢測次數為ξ=4;
方案二:檢測次數為ξ2,則ξ2可能取值為2,4,6,求概率分布列,計算數學期望;
方案四:混在一起檢測,檢測次數為ξ4,則ξ4可取值為1,5,求概率分布列,計算數學期望;
比較得出選擇方案幾最“優”;
(III)方案三:化驗次數為η3,則η3可取值為2,5,求概率分布列,計算數學期望;
方案四:化驗次數為η4,則η4可取值為1,5,求概率分布,計算數學期望;
由題意列不等式E(η3)<E(η4),求出p的取值范圍.

解答 解:(Ⅰ)2個A級混合樣本達標的概率是${({\frac{2}{{\sqrt{5}}}})^2}=\frac{4}{5}$,…(2分)
所以根據對立事件原理,2個A級混合樣本不達標的概率為$1-\frac{4}{5}=\frac{1}{5}$;…(4分)
(II)方案一:逐個檢測,檢測次數為ξ=4;
方案二:由(I)知,每組2個樣本的檢測時,若達標則檢測次數為1,概率為$\frac{4}{5}$;
若不達標則檢測次數為3,概率為$\frac{1}{5}$;
 故方案二的檢測次數為ξ2,則ξ2可能取值為2,4,6;
其概率分布列如下,

ξ2246
P${({\frac{4}{5}})^2}$$C_2^1×\frac{1}{5}×\frac{4}{5}$${({\frac{1}{5}})^2}$
可求得方案二的期望為$E({ξ_2})=2×\frac{16}{25}+4×\frac{8}{25}+6×\frac{1}{25}=\frac{70}{25}$;…(6分)
方案四:混在一起檢測,記檢測次數為ξ4
則ξ4可取值為1,5;其概率分布列如下:
ξ415
P${({\frac{2}{{\sqrt{5}}}})^4}$$1-{({\frac{2}{{\sqrt{5}}}})^4}$
可求得方案四的期望為$E({ξ_4})=1×\frac{16}{25}+5×\frac{9}{25}=\frac{61}{25}$,…(8分)
比較可得E(ξ4)<E(ξ2)<4,故選擇方案四最“優”;…(9分)
(III)方案三:設化驗次數為η3,則η3可取值為2,5;
其概率分布為:
η325
Pp31-p3
數學期望為$E({η_3})=2•{p^3}+5({1-{p^3}})=5-3{p^3}$;…(10分)
方案四:設化驗次數為η4,則η4可取值為1,5;
其概率分布為:
η415
Pp41-p4
數學期望為$E({η_4})=1•{p^4}+5({1-{p^4}})=5-4{p^4}$;…(11分)
由題意得E(η3)<E(η4),所以5-3p3<5-4p4,解得p<$\frac{3}{4}$;
所以當$0<p<\frac{3}{4}$時,方案三比方案四更“優”…(12分)

點評 本題考查了離散型隨機變量的概率分布列與數學期望的應用問題,是概率分布中較難的題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,則$3\overrightarrow a-2\overrightarrow b$=(  )
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.直線$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$(t為參數)被圓$\left\{\begin{array}{l}{x=5cosθ+3}\\{y=5sinθ-1}\end{array}\right.$(θ為參數)所截得的弦長為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.佳佳同學在8次測試中,數學成績的莖葉圖如圖,則這8次成績的中位數是(  )
A.86B.87C.87.5D.88.5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.隨機變量X服從正態分布(3,σ2),且P(X≤4)=0.84,則P(2<X<4)=(  )
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.如圖,三角形ABC中,AB=1,$BC=\sqrt{3}$,以C為直角頂點向外作等腰直角三角形ACD,當∠ABC變化時,線段BD的長度最大值為(  )
A.$\sqrt{6}-1$B.$\sqrt{6}$C.$\sqrt{6}+1$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.各項均為正數的等差數列{an}中,前n項和為Sn,當n∈N*,n≥2時,有${S_n}=\frac{n}{n-1}({a_n}^2-{a_1}^2)$,則S20-2S10=50.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.復數$\frac{2}{1-i}$=(  )
A.$\sqrt{2}$+$\sqrt{2}$iB.$\frac{{\sqrt{2}}}{2}$+$\frac{{\sqrt{2}}}{2}$iC.1-iD.1+i

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若在△ABC中,sinA:sinB:sinC=3:5:6,則sinB等于(  )
A.$\frac{{2\sqrt{14}}}{9}$B.$\frac{{\sqrt{14}}}{9}$C.$\frac{{\sqrt{11}}}{5}$D.$\frac{{2\sqrt{11}}}{5}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久草在线视频网 | 伊人久久视频 | 国产成人一区 | 国产福利电影一区 | 国产精品一区二区久久乐夜夜嗨 | 日韩毛片网| 91视频在线看 | 日韩欧美综合 | 国产免费一区 | 在线免费观看视频黄 | 欧美精品一二三 | 日韩免费网 | 一区二区欧美日韩 | 精品欧美日韩 | 伊人网在线视频 | 成人亚洲视频在线观看 | 国产精品一区二区三区免费观看 | 在线亚洲激情 | jvid美女成人福利视频 | 91麻豆产精品久久久久久 | 国产精品一区二区精品 | 欧美日韩成人在线 | 久久网日本 | 18毛片 | 日韩在线精品 | 精品欧美一区二区三区久久久 | 国产精品免费一区二区 | 天天操狠狠操 | 图片区 国产 欧美 另类 在线 | 成人久久18免费观看 | 国产精品一区av | 狠狠干欧美 | 亚洲爽爽 | 就操成人网 | 成人1区| 国产一区二区精品在线 | 欧美黄色一区二区 | 欧美激情欧美激情在线五月 | 99久久精品一区二区 | 色悠久久久 | 欧美成人h|