分析 求出函數f(x)的導數的解析式,對實數a分類討論后,分別令y′>0,y′<0,求得單調區間,從而求出函數的最小值即可.
解答 解:∵f(x)=ax-xlna,
∴f′(x)=axlna-lna=(ax-1)lna,
當a>1時,lna>0,
令f′(x)>0,即ax-1>0,解得x>0
令f′(x)<0,即ax-1<0,解得x<0;
當0<a<1時,lna<0,
令f′(x)>0,即ax-1<0,解得x>0
令f′(x)<0,即ax-1>0,解得x<0;
∴f(x)在(-∞,0)上單調遞減,在(0,+∞)上單調遞增;
∴f(x)的最小值是f(0)=1,
故答案為:1.
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{10}$個單位長度 | B. | 向右平移$\frac{π}{10}$個單位長度 | ||
C. | 向左平移$\frac{π}{2}$個單位長度 | D. | 向右平移$\frac{π}{2}$個單位長度 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | $-\frac{1}{3}$ | D. | -3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com