分析 根據函數的單調性和奇偶性將問題轉化為|x+1|>|2x-1|,解出即可.
解答 解:∵f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}$)-|${\frac{x}{e}}$|,
∴f(-x)=f(x),
∴f(x)是偶函數,
x>0時,f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}$)-${\frac{x}{e}}$,
∴f(x)為減函數,
∴當x<0時,f(x)為增函數
若f(x+1)<f(2x-1),
則|x+1|>|2x-1|,解得:0<x<2,
故答案為:(0,2).
點評 本題考查了函數的單調性、奇偶性問題,考查轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $96+16\sqrt{5}$ | B. | $80+16\sqrt{5}$ | C. | $80+32\sqrt{5}$ | D. | $96+32\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(18+\sqrt{3})π$ | B. | $(21+\sqrt{3})π$ | C. | $(18+\sqrt{5})π$ | D. | $(21+\sqrt{5})π$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | men<nem | B. | men>nem | C. | mlnn>nlnm | D. | mlnn<nlnm |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com