日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
7.設雙曲線C:$\frac{x^2}{2}-\frac{y^2}{3}=1$,F1,F2為其左右兩個焦點.
(1)設O為坐標原點,M為雙曲線C右支上任意一點,求$\overrightarrow{OM}•\overrightarrow{{F_1}M}$的取值范圍;
(2)若動點P與雙曲線C的兩個焦點F1,F2的距離之和為定值,且cos∠F1PF2的最小值為$-\frac{1}{9}$,求動點P的軌跡方程.

分析 (1)設M(x,y),$x≥\sqrt{2}$,左焦點${F_1}(-\sqrt{5},0)$,通過$\overrightarrow{OM}•\overrightarrow{{F_1}M}=(x,y)•(x+\sqrt{5},y)$利用二次函數的性質求出對稱軸$x=-\frac{{\sqrt{5}}}{5}≤\sqrt{2}$,求出$\overrightarrow{OM}•\overrightarrow{{F_1}M}$的取值范圍.
(2)寫出P點軌跡為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,利用$|{{F_1}{F_2}}|=2\sqrt{5}$,|PF1|+|PF2|=2a,結合余弦定理,以及基本不等式求解橢圓方程即可.

解答 解:(1)設M(x,y),$x≥\sqrt{2}$,左焦點${F_1}(-\sqrt{5},0)$,$\overrightarrow{OM}•\overrightarrow{{F_1}M}=(x,y)•(x+\sqrt{5},y)$=${x^2}+\sqrt{5}x+{y^2}={x^2}+\sqrt{5}x+\frac{{3{x^2}}}{2}-3$…(4分)
=$\frac{5}{2}{x^2}+\sqrt{5}x-3$($x≥\sqrt{2}$)
對稱軸$x=-\frac{{\sqrt{5}}}{5}≤\sqrt{2}$,
$\overrightarrow{OM}•\overrightarrow{{F_1}M}∈[{2+\sqrt{10},+∞})$…(3分)
(2)由橢圓定義得:P點軌跡為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,$|{{F_1}{F_2}}|=2\sqrt{5}$,|PF1|+|PF2|=2a$cos∠{F_1}P{F_2}=\frac{{{{|{P{F_1}}|}^2}+{{|{P{F_2}}|}^2}-20}}{{2|{P{F_1}}|•|{P{F_2}}|}}=\frac{{4{a^2}-2|{P{F_1}}|•|{P{F_2}}|-20}}{{2|{P{F_1}}|•|{P{F_2}}|}}$=$\frac{{4{a^2}-20}}{{2|{P{F_1}}|•|{P{F_2}}|}}-1$…(4分)
由基本不等式得$2a=|{P{F_1}}|+|{P{F_2}}|≥2\sqrt{|{P{F_1}}|•|{P{F_2}}|}$,
當且僅當|PF1|=|PF2|時等號成立$|{P{F_1}}|•|{P{F_2}}|≤{a^2}$$⇒cos∠{F_1}P{F_2}≥\frac{{4{a^2}-20}}{{2{a^2}}}-1=-\frac{1}{9}⇒{a^2}=9$,b2=4
所求動點P的軌跡方程為$\frac{x^2}{9}+\frac{y^2}{4}=1$…(3分)

點評 本題考查直線與橢圓的位置關系的應用,橢圓方程的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.某奶茶店的日銷售收入y(單位:百元)與當天平均氣溫x(單位:℃)之間的關系如下:
x-2-1012
y5221
通過上面的五組數據得到了x與y之間的線性回歸方程:$\stackrel{∧}{y}$=-x+2.8;但現在丟失了一個數據,該數據應為(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.數列{an}是首項為1,公差為2的等差數列,Sn是它前n項和,則$\lim_{n→∞}\frac{S_n}{a_n^2}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.函數$f(x)=1-3{sin^2}({x+\frac{π}{4}})$的最小正周期為π.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.在無窮等比數列{an}中,$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=\frac{1}{2}$,則a1的取值范圍是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({0,\frac{1}{2}})∪$$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.在二項式(x+$\frac{6}{x}$)6的展開式中,常數項是4320.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知f(x)=sin$\frac{π}{3}$x,A={1,2,3,4,5,6,7,8}現從集合A中任取兩個不同元素s、t,則使得f(s)•f(t)=0的可能情況為 (  )
A.12種B.13種C.14種D.15種

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.上海市松江區天馬山上的“護珠塔”因其傾斜度超過意大利的比薩斜塔而號稱“世界第一斜塔”.興趣小組同學實施如下方案來測量塔的傾斜度和塔高:如圖,記O點為塔基、P點為塔尖、點P在地面上的射影為點H.在塔身OP射影所在直線上選點A,使仰角k∠HAP=45°,過O點與OA成120°的地面上選B點,使仰角∠HPB=45°(點A、B、O都在同一水平面上),此時測得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長,精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.集合P={x|x<2},集合Q={y|y<1},則P與Q的關系為(  )
A.P⊆QB.Q⊆PC.P=QD.以上都不正確

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人精品一区二区三区中文字幕 | 中文字幕第一页久久 | 中文天堂在线观看视频 | 日本亚洲精品 | 黄页视频在线免费观看 | 久久久久久免费毛片精品 | 婷婷色站| 日韩在线h| 亚洲蜜桃精久久久久久久 | 久久呻吟 | av在线官网| 日韩在线播放欧美字幕 | 亚洲精品成人久久久 | 国产一区二区三区91 | 国产剧情一区二区 | 成人在线免费电影 | 天天干夜夜骑 | 欧美在线视频网站 | 午夜激情影院 | 一区免费在线观看 | 日日摸天天爽天天爽视频 | 97超碰人人在线 | 成人久久18 | 国产欧美一区二区三区在线看 | 蜜桃精品视频在线 | 欧美18免费视频 | 成年入口无限观看网站 | 四虎新网站 | 国产情侣免费视频 | 欧美成人在线免费观看 | 91亚洲国产成人久久精品网站 | av片免费| 日本aaaaaa| 超碰人人99 | 日本亚洲国产一区二区三区 | 一级片大全 | 亚洲一区二区av | 国产不卡在线看 | 亚洲最新av | 久久人人爽人人爽人人片av不 | 欧洲国产伦久久久久久久 |