分析 (1)利用三角函數恒等變換的應用化簡函數解析式可得f(x)=2sin(2x+$\frac{π}{6}$),利用正弦函數的性質即可求得f(x)的最大值.
(2)由三角函數恒等變換的應用化簡得sin C=2sin A,由正弦定理得c=2a.由余弦定理可求cosA的值,進而可求B,代入即可得解f(B)的值.
解答 解:(1)∵f(x)=$\sqrt{3}$sin 2x-3sin2x-cos2x+2(sin2x+cos2x)
=$\sqrt{3}$sin 2x+cos2x-sin2x
=$\sqrt{3}$sin 2x+cos 2x
=2sin(2x+$\frac{π}{6}$).
∴f(x)的最大值是2.
(2)由sin(2A+C)=2sin A+2sin Acos(A+C),得:
sin Acos (A+C)+cos Asin(A+C)=2sin A+2sin Acos (A+C);
化簡得sin C=2sin A,
由正弦定理得c=2a.又b=$\sqrt{3}$a,
由余弦定理得:a2=b2+c2-2bccos A=3a2+4a2-4$\sqrt{3}$a2cos A,
∴cosA=$\frac{\sqrt{3}}{2}$,∴A=$\frac{π}{6}$,B=$\frac{π}{3}$,C=$\frac{π}{2}$,
∴f(B)=f($\frac{π}{3}$)=2sin$\frac{5π}{6}$=1.
點評 本題主要考查了三角函數恒等變換的應用,正弦函數的性質,正弦定理,余弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$,$\frac{π}{6}$ | B. | 2,$\frac{π}{3}$ | C. | 2,$\frac{π}{6}$ | D. | $\frac{1}{2}$,-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}+\sqrt{7}}{2}$ | B. | $\frac{\sqrt{11}+\sqrt{33}}{2}$ | C. | $\frac{\sqrt{3}+\sqrt{39}}{6}$ | D. | $\frac{1+\sqrt{17}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com