日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
13.設a,b∈R,函數$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx+1$,g(x)=ex(e為自然對數的底數),且函數f(x)的圖象與函數g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數f(x)的單調性;
(Ⅲ)若g(x)>f(x)在區間(-∞,0)內恒成立,求a的取值范圍.

分析 (Ⅰ)求出兩個函數的導數,利用函數f(x)的圖象與函數g(x)的圖象在x=0處有公共的切線.列出方程即可求解b.
(Ⅱ)求出導函數f'(x)=,通過-1≤a≤1時,當a2>1時,分別判斷導函數的符號,推出函數的單調區間.
(Ⅲ)令h(x)=g'(x)-f'(x)=ex-x2-2ax-1,可得h(0)0.求出h'(x)=ex-2x-2a,令u(x)=h'(x)=ex-2x-2a,求出導數u'(x)=ex-2.當x≤0時,u'(x)<0,從而h'(x)單調遞減,求出$a=\frac{1}{2}$.考慮$a≤\frac{1}{2}$的情況,$a>\frac{1}{2}$的情況,分別通過函數的單調性以及函數的最值,推出a的范圍即可.

解答 (Ⅰ)f'(x)=x2+2ax+b,g'(x)=ex,
由f'(0)=b=g'(0)=1,得b=1.…(2分)
(Ⅱ)f'(x)=x2+2ax+1=(x+a)2+1-a2,
當a2≤1時,即-1≤a≤1時,f'(x)≥0,從而函數f(x)在定義域內單調遞增,
當a2>1時,$f'(x)=({x+a+\sqrt{{a^2}-1}})({x+a-\sqrt{{a^2}-1}})$,此時
若$x∈({-∞,-a-\sqrt{{a^2}-1}})$,f'(x)>0,則函數f(x)單調遞增;
若$x∈({-a-\sqrt{{a^2}-1},-a+\sqrt{{a^2}-1}})$,f'(x)<0,則函數f(x)單調遞減;
若$x∈({-a+\sqrt{{a^2}-1},+∞})$時,f'(x)>0,則函數f(x)單調遞增.…(6分)
(Ⅲ)令h(x)=g'(x)-f'(x)=ex-x2-2ax-1,則h(0)=e0-1=0.h'(x)=ex-2x-2a,令u(x)=h'(x)=ex-2x-2a,則u'(x)=ex-2.
當x≤0時,u'(x)<0,從而h'(x)單調遞減,
令u(0)=h'(0)=1-2a=0,得$a=\frac{1}{2}$.
先考慮$a≤\frac{1}{2}$的情況,此時,h'(0)=u(0)≥0;
又當x∈(-∞,0)時,h'(x)單調遞減,所以h'(x)>0;
故當x∈(-∞,0)時,h(x)單調遞增;
又因為h(0)=0,故當x<0時,h(x)<0,
從而函數g(x)-f(x)在區間(-∞,0)內單調遞減;
又因為g(0)-f(0)=0,所以g(x)>f(x)在區間(-∞,0)恒成立.
接下來考慮$a>\frac{1}{2}$的情況,此時,h'(0)<0,
令x=-a,則h'(-a)=e-a>0.
由零點存在定理,存在x0∈(-a,0)使得h'(x0)=0,
當x∈(x0,0)時,由h'(x)單調遞減可知h'(x)<0,所以h(x)單調遞減,
又因為h(0)=0,故當x∈(x0,0)時h(x)>0.
從而函數g(x)-f(x)在區間(x0,0)單調遞增;
又因為g(0)-f(0)=0,所以當x∈(x0,0),g(x)<f(x).
綜上所述,若g(x)>f(x)在區間(-∞,0)恒成立,則a的取值范圍是$(-∞,\frac{1}{2}]$.…(14分)

點評 本題主要考查導數的運算、導數在研究函數中的應用、函數的零點等基礎知識,考查推理論證能力、運算求解能力、創新意識,考查函數與方程、數形結合、分類與整合、化歸與轉化等數學思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

3.已知空間四邊形ABCD的兩條對角線的長AC=6,BD=8,AC與BD所成的角為30o,E,F,G,H分別是AB,BC,CD,DA的中點,求四邊形EFGH的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知函數f(x)的定義域為R,M為常數.若p:對?x∈R,都有f(x)≥M;q:M是函數f(x)的最小
值,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.如圖,A1,A2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的長軸的左、右端點,O為坐標原點,S,Q,T為橢圓上不同于A1,A2的三點,直線QA1,QA2,OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=14.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.設向量$\overrightarrow{m}$=(2x-1,3),向量$\overrightarrow{n}$=(1,-1),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實數x的值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.執行如圖所示的程序框圖,輸出的S值為(  )
A.1B.$\sqrt{2015}-1$C.$\sqrt{2016}-1$D.$\sqrt{2017}-1$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.若函數$f(x)=\frac{x}{2}+ln\sqrt{x}$在某區間[a,b]上的值域為[ta,tb],則t的取值范圍($\frac{1}{2}$,$\frac{1+e}{2e}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.參加成都七中數學選修課的同學,對某公司的一種產品銷量與價格進行了統計,得到如下數據和散點圖:

定價x(元/kg)102030405060
年銷量y(kg)115064342426216586
z=2lny14.112.912.111.110.28.9
(參考數據:$\sum_{i=1}^6{({x_i}-\overline x)}•({y_i}-\overline y)=-34580$,$\sum_{i=1}^6{({x_i}-\overline x)}•({z_i}-\overline z)=-175.5$$\sum_{i=1}^6{{{({y_i}-\overline y)}^2}}=776840$,$\sum_{i=1}^6{({y_i}-\overline y)}•({z_i}-\overline z)=3465.2$)
(1)根據散點圖判斷,y與x,z與x哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?
(2)根據(1)的判斷結果及數據,建立y關于x的回歸方程(方程中的系數均保留兩位有效數字).
(3)定價為多少元/kg時,年利潤的預報值最大?
附:對于一組數據(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線$\widehat{y}$=$\widehat$•x+$\widehat{a}$的斜率和截距的最小二乘估計分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-n•$\widehat$•$\overline{x}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=b+logax(x>0且a≠1)的圖象經過點(8,2)和(1,-1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實數x的值;
(3)令y=g(x)=2f(x+1)-f(x),求y=g(x)的最小值及其最小值時x的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产高清在线精品 | 综合久久久久久久 | 色丁香婷婷 | 91激情视频| 久久久久毛片 | 天天操天天色天天 | 国产精品久久久久久久7电影 | 一级黄色片看看 | 在线婷婷| 欧美黄视频在线观看 | 亚洲黄色性视频 | 精品国产一区二区三区久久久 | 日本久久伊人 | 亚洲综合视频 | 久草视频在线播放 | 日本精品视频网站 | 亚洲毛片在线观看 | 丁香婷婷综合激情五月色 | 国产精品99一区二区三区 | 亚洲自拍电影网 | 免费在线观看一区二区 | 色在线免费视频 | 久久综合色视频 | 精品视频久久 | aaaaaaa片毛片免费观看 | 国产中文在线 | 国产高清免费 | 青草青在线视频 | 91精品中文字幕一区二区三区 | 精品久久久久久国产 | eeuss影院一区二区三区 | 国产在线第一页 | 国产精品久久久久久一区二区三区 | 国产精品久久久久aaaa九色 | 羞羞视频在线免费 | 亚洲精品久久久久久久久久久久久 | 日韩在线播放欧美字幕 | 国产精品美女视频一区二区三区 | 夜夜草视频 | 黄a免费看 | 亚洲国产一区二区三区四区 |