分析 (Ⅰ)求出兩個函數的導數,利用函數f(x)的圖象與函數g(x)的圖象在x=0處有公共的切線.列出方程即可求解b.
(Ⅱ)求出導函數f'(x)=,通過-1≤a≤1時,當a2>1時,分別判斷導函數的符號,推出函數的單調區間.
(Ⅲ)令h(x)=g'(x)-f'(x)=ex-x2-2ax-1,可得h(0)0.求出h'(x)=ex-2x-2a,令u(x)=h'(x)=ex-2x-2a,求出導數u'(x)=ex-2.當x≤0時,u'(x)<0,從而h'(x)單調遞減,求出$a=\frac{1}{2}$.考慮$a≤\frac{1}{2}$的情況,$a>\frac{1}{2}$的情況,分別通過函數的單調性以及函數的最值,推出a的范圍即可.
解答 (Ⅰ)f'(x)=x2+2ax+b,g'(x)=ex,
由f'(0)=b=g'(0)=1,得b=1.…(2分)
(Ⅱ)f'(x)=x2+2ax+1=(x+a)2+1-a2,
當a2≤1時,即-1≤a≤1時,f'(x)≥0,從而函數f(x)在定義域內單調遞增,
當a2>1時,$f'(x)=({x+a+\sqrt{{a^2}-1}})({x+a-\sqrt{{a^2}-1}})$,此時
若$x∈({-∞,-a-\sqrt{{a^2}-1}})$,f'(x)>0,則函數f(x)單調遞增;
若$x∈({-a-\sqrt{{a^2}-1},-a+\sqrt{{a^2}-1}})$,f'(x)<0,則函數f(x)單調遞減;
若$x∈({-a+\sqrt{{a^2}-1},+∞})$時,f'(x)>0,則函數f(x)單調遞增.…(6分)
(Ⅲ)令h(x)=g'(x)-f'(x)=ex-x2-2ax-1,則h(0)=e0-1=0.h'(x)=ex-2x-2a,令u(x)=h'(x)=ex-2x-2a,則u'(x)=ex-2.
當x≤0時,u'(x)<0,從而h'(x)單調遞減,
令u(0)=h'(0)=1-2a=0,得$a=\frac{1}{2}$.
先考慮$a≤\frac{1}{2}$的情況,此時,h'(0)=u(0)≥0;
又當x∈(-∞,0)時,h'(x)單調遞減,所以h'(x)>0;
故當x∈(-∞,0)時,h(x)單調遞增;
又因為h(0)=0,故當x<0時,h(x)<0,
從而函數g(x)-f(x)在區間(-∞,0)內單調遞減;
又因為g(0)-f(0)=0,所以g(x)>f(x)在區間(-∞,0)恒成立.
接下來考慮$a>\frac{1}{2}$的情況,此時,h'(0)<0,
令x=-a,則h'(-a)=e-a>0.
由零點存在定理,存在x0∈(-a,0)使得h'(x0)=0,
當x∈(x0,0)時,由h'(x)單調遞減可知h'(x)<0,所以h(x)單調遞減,
又因為h(0)=0,故當x∈(x0,0)時h(x)>0.
從而函數g(x)-f(x)在區間(x0,0)單調遞增;
又因為g(0)-f(0)=0,所以當x∈(x0,0),g(x)<f(x).
綜上所述,若g(x)>f(x)在區間(-∞,0)恒成立,則a的取值范圍是$(-∞,\frac{1}{2}]$.…(14分)
點評 本題主要考查導數的運算、導數在研究函數中的應用、函數的零點等基礎知識,考查推理論證能力、運算求解能力、創新意識,考查函數與方程、數形結合、分類與整合、化歸與轉化等數學思想.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2015}-1$ | C. | $\sqrt{2016}-1$ | D. | $\sqrt{2017}-1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2lny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com