分析 (1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可;
(2)根據函數的單調性得到f(x1)≥f(1)=-$\frac{1}{2}$,問題轉化為存在x2∈[1,2],使得$g({x_2})≤-\frac{1}{2}$,分離參數即得到$2b≥x+\frac{9}{2x}$在x∈[1,2]時有解,求出b的范圍即可.
解答 解:(1)函數f(x)的定義域為(0,+∞),
$f'(x)=\frac{1}{x}-a-\frac{1-a}{x^2}$=$\frac{{-a{x^2}+x+a-1}}{x^2}=\frac{{-a{x^2}+x+a-1}}{x^2}=\frac{(-x+1)(ax+(a-1))}{x^2}$,
令f'(x)=0,則x1=1,${x_2}=\frac{1-a}{a}$(a>1,x2<0)舍去.
令f'(x)>0,則x>1,令f'(x)<0,則0<x<1,
所以當x∈(1,+∞)時,函數f(x)單調遞增;當x∈(0,1)時,函數f(x)單調遞減;
(2)當$a=\frac{1}{4}$時,
由(1)可知f'(x)=0的兩根分別為x1=1,${x_2}=\frac{1-a}{a}=3$
令f'(x)>0,則0<x<1或x>3,令f'(x)<0,則1<x<3
可知函數f(x)在(0,1)上單調遞減,在(1,2)上單調遞增,
所以對任意的x1∈(0,2),有$f({x_1})≥f(1)=ln1-\frac{1}{4}+1-\frac{1}{4}-1=-\frac{1}{2}$,
由條件知存在x2∈[1,2],使f(x1)≥g(x2),
所以$g({x_2})≤-\frac{1}{2}$即存在x2∈[1,2],使得$g({x_2})≤-\frac{1}{2}$,
分離參數即得到$2b≥x+\frac{9}{2x}$在x∈[1,2]時有解,
由于$t=x+\frac{9}{2x}$(x∈[1,2])為減函數,故其最小值為$\frac{17}{4}$,
從而$2b≥\frac{17}{4}$$b≥\frac{17}{8}$,所以實數b的取值范圍是$[\frac{17}{8},+∞)$.
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,是一道綜合題.
科目:高中數學 來源: 題型:選擇題
A. | (1,$\sqrt{3}$) | B. | (-1,$\sqrt{3}$) | C. | (1,1) | D. | (-1,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2\sqrt{5}}{3}$ | B. | 2 | C. | $\frac{5\sqrt{5}}{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=±\frac{1}{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{5}}}{5}x$ | D. | $y=±\sqrt{5}x$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{9\sqrt{3}}{8}$ | D. | $\frac{9\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com