分析 (1)根據導數幾何意義,導數的幾何意義、切點坐標的應用,得到關于b,c的方程組,解得即可.
(2)利用導數求出函數的單調區間,可得函數的極值,利用方程f(x)-m=0有三個解,即可求m的取值范圍.
解答 解:(1)∵f'(x)=3x2+2bx+c,
∴k=f'(1)=3+2b+c=-12①,
又∵f(1)=-11,∴-,11=1+b+c②,
由①②解得:b=-3,c=-9;
(2)f'(x)=3x2-6x-9=3(x+1)(x-3),
∴f(x)在(-∞,-1)單調遞增,在(-1,3)單調遞減,在(3,+∞)單調遞增.
∴f(x)得極大值f(-1)=5,極小值為f(3)=-27,
∵方程f(x)-m=0有三個解,
∴-27<m<5.
點評 本題導數的幾何意義、切點坐標的應用,導數研究函數的單調性,待定系數法求解析式,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ab≤1 | B. | a2+b2≥2 | C. | $\sqrt{a}$+$\sqrt{b}$≤$\sqrt{2}$ | D. | $\frac{1}{a}$+$\frac{1}{b}$≥2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x1>x2>x3 | B. | x2>x1>x3 | C. | x3>x2>x1 | D. | x3>x1>x2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com