分析 對|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|兩邊平方,并設$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,整理可得關于t的一元二次不等式,再由不等式恒成立思想,運用判別式小于等于0,求得m的值.
解答 解:|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,
兩邊平方可得,${\overrightarrow{AB}}^{2}$-2t$\overrightarrow{AB}$•$\overrightarrow{AC}$+t2${\overrightarrow{AC}}^{2}$≥${\overrightarrow{AB}}^{2}$-2$\overrightarrow{AB}$•$\overrightarrow{AC}$+${\overrightarrow{AC}}^{2}$,
設$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,
則22t2-2tm-(22-2m)≥0,
又|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|$≥|\overrightarrow{BC}$|對任意t∈(0,+∞)恒成立,
則判別式△=4m2+4×4(4-2m)≤0,
化簡可得(m-4)2≤0,
由于(m-4)2≥0,則m=4,
即$\overrightarrow{AB}$•$\overrightarrow{AC}$=4.
故答案為:4.
點評 本題考查了平面向量的數量積運算,以及不等式恒成立問題,是綜合題.
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | $\frac{1}{4}$ | C. | 8 | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,$\frac{1}{8}$) | B. | (0,-$\frac{1}{8}$) | C. | ($\frac{1}{8}$,0) | D. | (-$\frac{1}{8}$,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 假設a,b,c都不為0 | B. | 假設a,b,c不都為0 | ||
C. | 假設a,b,c至多有一個為0 | D. | 假設a,b,c都為0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com