日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.已知函數(shù)f(x)=ax-a+1,(a>0且a≠1)恒過(guò)定點(diǎn)(2,2).
(1)求實(shí)數(shù)a;
(2)在(1)的條件下,將函數(shù)f(x)的圖象向下平移1個(gè)單位,再向左平移a個(gè)單位后得到函數(shù)g(x),設(shè)函數(shù)g(x)的反函數(shù)為h(x),求h(x)的解析式;
(3)對(duì)于定義在(1,4]上的函數(shù)y=h(x),若在其定義域內(nèi),不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范圍.

分析 (1)令x=a,則f(a)=2,從而可知f(x)過(guò)定點(diǎn)(a,2),再由題設(shè)即可求得a值;
(2)根據(jù)圖象平移規(guī)則:左加右減,上加下減即可求得g(x)表達(dá)式,從而可得h(x)的解析式;
(3)令t=log3x,則t∈[0,2],不等式[h(x)+2]2≤h(x2)+m+6 恒成立,可轉(zhuǎn)化為關(guān)于t的二次不等式恒成立,進(jìn)而轉(zhuǎn)化為求函數(shù)的最值解決,利用二次函數(shù)的性質(zhì)易求其最值;

解答 解:(1)由已知a2-a+1=2,∴a=2. 
(2)∵f(x)=2x-2+1,
∴g(x)=2x
∴h(x)=log2x(x>0),
(3)要使不等式有意義:則有1<x≤4且1<x2≤4,
∴1<x≤2,
據(jù)題有${({log_2}x+2)^2}≤{log_2}{x^2}+m{log_2}x+6$在(1,2]恒成立,
∴設(shè)t=log2x(1<x≤2),
∴0<t≤1,
∴(t+2)2≤2t+tm+6在(0,1]時(shí)恒成立.
即:$m≥\frac{{{t^2}+2t-2}}{t}=t-\frac{2}{t}+2$在[0,1]時(shí)恒成立,
設(shè)$y=t-\frac{2}{t}+2$,t∈(0,1]單調(diào)遞增,
∴t=1時(shí),有ymax=1,
∴m≥1.

點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查函數(shù)圖象變換及反函數(shù),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,解決恒成立問(wèn)題的基本思路是轉(zhuǎn)化為函數(shù)的最值解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知點(diǎn)A(0,2),B(4,6),$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,其中t1、t2為實(shí)數(shù);
(1)若點(diǎn)M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當(dāng)t1=1時(shí),不論t2為何值,A、B、M三點(diǎn)共線;
(3)若t1=a2,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,且△ABM的面積為12,求a和t2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x2-1)定義域?yàn)閇0,3],則f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[1,$\frac{3}{2}$]B.[0,$\frac{9}{2}$]C.[-3,15]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若二次函數(shù)f(x)=ax2+bx+c的圖象頂點(diǎn)坐標(biāo)為(-1,-4)且f(0)=-3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=$\left\{\begin{array}{l}{a{x}^{2}+bx+c,(x≤0)}\\{{x}^{2}-2x-3,(x>0)}\end{array}\right.$,畫(huà)出函數(shù)g(x)圖象并求單調(diào)區(qū)間;
(Ⅲ)求函數(shù)g(x)在[-3,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)的定義域?yàn)椋?2,1),則函數(shù)f(2x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-$\frac{1}{2}$,1)B.(-5,1)C.($\frac{1}{2}$,1)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知定義域?yàn)镽的奇函數(shù)f(x)滿足f(log2x)=$\frac{-x+a}{x+1}$.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在定義域 R的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(3t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是(  )
A.-$\frac{2}{4029}$B.-$\frac{2}{4030}$C.-$\frac{2}{4031}$D.-$\frac{2}{4033}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2+bx+c,若f(-3)=f(1),f(0)=-3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ) 若函數(shù)g(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,x≤0}\\{-3-x,x>0}\end{array}\right.$   畫(huà)出函數(shù)g(x)圖象;
(Ⅱ)求函數(shù)g(x)在[-3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓$\frac{x^2}{2}+{y^2}=1$及點(diǎn)B(0,-3),過(guò)左焦點(diǎn)F1與B的直線交橢圓于C,D兩點(diǎn),F(xiàn)2為橢圓的右焦點(diǎn),求△CDF2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 久久亚洲视频 | 欧美久久久久久 | 中文字幕第一页在线 | 自拍偷拍第一页 | 免费av播放 | 亚洲欧美激情精品一区二区 | av免费观看网页 | 色黄视频在线观看 | 日本亚洲精品一区二区三区 | 国产亚洲精品久久久久动 | www.色.com| 久久国产精品视频 | 日韩中文字幕欧美 | 亚洲乱码国产乱码精品精98午夜 | 日韩精品专区 | 农村少妇kkkk7777 | 天堂中文字幕在线 | 午夜日韩| 九九久久九九 | 欧美精品网 | 成人精品鲁一区一区二区 | 国产精品久久久久久亚洲调教 | 青青草在线视频免费观看 | 日韩中文一区二区三区 | 每日更新在线观看av | 欧美在线国产 | 欧美精品一区二区三区在线 | 日韩一二三区视频 | 久草.com | 三级影院在线观看 | 国产亚洲精品综合一区91555 | 精品视频在线免费观看 | 成人在线超碰 | 精品一区二区三区四区五区 | wwwxxx日本 | 日韩城人网站 | 中文字幕在线观看第一页 | 国产丝袜一区二区三区免费视频 | www污在线观看| 国产精品美女久久久久aⅴ国产馆 | 精品久久久久一区二区国产 |