A. | f(sin$\frac{π}{8}$)<f(cos$\frac{π}{8}$) | B. | f(sin1)>f(cos1) | ||
C. | f(sin$\frac{π}{12}$)<f(sin$\frac{5π}{12}$) | D. | f(sin$\frac{π}{12}$)>f(tan$\frac{π}{12}$) |
分析 由偶函數f(x)在[-1,0]上為單調增函數,可得f(x)在[0,1]上單調遞減,由此判斷各個選項是否正確,從而得出結論.
解答 解:偶函數f(x)在[-1,0]上為單調增函數,故f(x)在[0,1]上單調遞減,
∵0<sin$\frac{π}{8}$<cos$\frac{π}{8}$<1,∴f(sin$\frac{π}{8}$)>f(cos$\frac{π}{8}$),故A不對.
∵1>sin1>cos1>0,∴f(sin1)<f(cos1),故B不對.
∵0<sin$\frac{π}{12}$<sin$\frac{5π}{12}$<1,∴f(sin$\frac{π}{12}$)>f(sin$\frac{5π}{12}$),故C不對.
∵0<sin$\frac{π}{12}$<tan$\frac{π}{12}$<1,∴f(sin$\frac{π}{12}$)>f(tan$\frac{π}{12}$),故D正確,
故選:D.
點評 本題主要考查函數的單調性和奇偶性的應用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條 件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com