A. | x>ln4 | B. | 0<x<ln4 | C. | x>1 | D. | 0<x<1 |
分析 構造函數g(x)=$\frac{f(x)}{{e}^{x}}$,利用導數可判斷g(x)的單調性,再根據f(1)=e,求得g(1)=1,繼而求出答案.
解答 解:∵?x∈R,都有f′(x)>f(x)成立,
∴f′(x)-f(x)>0,于是有( $\frac{f(x)}{{e}^{x}}$)′>0,
令g(x)=$\frac{f(x)}{{e}^{x}}$,則有g(x)在R上單調遞增,
∵不等式f(x)>ex,
∴g(x)>1,
∵f(1)=e,
∴g(1)=1,
∴x>1,
故選:C.
點評 本題考查導數的運算及利用導數研究函數的單調性,屬中檔題,解決本題的關鍵是根據選項及已知條件合理構造函數,利用導數判斷函數的單調性.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a1a8≤a2a7 | B. | a1a8≥a2a7 | C. | S1S8<S2S7 | D. | S1S8≥S2S7 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ${({\frac{1}{4}})^a}<{({\frac{1}{3}})^b}$ | B. | $\frac{1}{a}>\frac{1}{b}$ | C. | ln(a-b)>0 | D. | 3a-b<1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com