分析 (1)先利用待定系數法求得拋物線和直線的解析式,從而得出對稱軸與直線的交點;
(2)由拋物線解析式求得點A、B坐標,結合點D坐標可知△ABD為等腰直角三角形,即∠DAB=∠DBA=45°、∠ADB=90°,由翻折性質得D′M=DM、DN=ND′,從而得出四邊形MDND′為菱形,根據∠MDN=90°即可得四邊形MDND′為正方形;設DM=DN=t,在Rt△D′NB中D′N=t、BN=2$\sqrt{2}$-t、BD′=2,根據勾股定理即可得出t的值;
(3)由△ABD為等腰直角三角形及△PBD與△ABD相似且不全等,知△PBD是以BD為斜邊的等腰直角三角形,結合圖形即可得答案.
解答 解:(1)將點A(-1,0)、C(2,3)代入y=-x2+bx+c,得:
$\left\{\begin{array}{l}{-1-b+c=0}\\{-4+2b+c=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
∴拋物線的解析式為y=-x2+2x+3,
∵y=-x2+2x+3=-(x-1)2+4,
∴拋物線的對稱軸為直線x=1,
設直線AC的函數解析式為y=kx+b,
將A(-1,0)、C(2,3)代入y=kx+b,得:
$\left\{\begin{array}{l}{-k+b=0}\\{2k+b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=1}\end{array}\right.$,
∴直線AC的函數解析式為y=x+1,
又∵點D是直線AC與拋物線的對稱軸的交點,
∴xD=1,yD=1+1=2,
∴點D的坐標為(1,2).
(2)四邊形DMD′N是正方形,理由如下:
∵拋物線y=-x2+2x+3與x軸交于A、B兩點,
∴令y=0,得-x2+2x+3=0,
解得:x1=-1,x2=3,
∴A(-1,0)、B(3,0),
∴AD=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,BD=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,AB=1+3=4,
而AD2+BD2=AB2,
∴△ABD是等腰直角三角形,
∴∠DAB=∠DBA=45°,∠ADB=90°,
由翻折可知:D′M=DM、DN=ND′,
又∵DM=DN,
∴四邊形MDND′為菱形,
∵∠MDN=90°,
∴四邊形MDND′是正方形;
設DM=DN=t,當點D落在x軸上的點D′處時,
∵四邊形MDND′為正方形,
∴∠D′NB=90°,
在Rt△D′NB中,D′N=t,BN=2$\sqrt{2}$-t,BD′=2,
∴t2+(2$\sqrt{2}$-t)2=22,
∴t1=t2=$\sqrt{2}$,
即:經過$\sqrt{2}$s時,點D恰好落在x軸上的D′處.
(3)存在,
如圖,
由(2)知△ABD為等腰直角三角形,
∵△PBD與△ABD相似,且不全等,
∴△PBD是以BD為斜邊的等腰直角三角形,
∴點P的坐標為(1,0)或(2,3).
點評 本題主要考查二次函數的綜合運用,熟練掌握待定系數法求函數解析式、翻折的性質、等腰直角三角形的判定與性質、正方形的判定與性質及勾股定理是解題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com