分析 由勾股定理求出AC,分三種情況:①CD=BD時,∠C=∠DBC,證出BD=AD,得出CD=AD=$\frac{1}{2}$AC=2.5,即可得出結果;②當CD=BC時,CD=3,即可得出結果;③當BD=BC時,過點B作BF⊥AC于F,則CF=DF,由三角形的面積求出BF,由勾股定理求出CF,得出CD,即可得出結果.
解答 解:∵∠ABC=90°,AB=4,BC=3,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5,
分三種情況:
①CD=BD時,∠C=∠DBC,
∵∠C+∠A=∠DBC+∠DBA=90°,
∴∠A=∠DBA,
∴BD=AD,
∴CD=AD=$\frac{1}{2}$AC=2.5,即t=2.5;
②當CD=BC時,CD=3,即t=3;③當BD=BC時,過點B作BF⊥AC于F,如圖所示:
則CF=DF,△ABC的面積=$\frac{1}{2}$AB•BC=$\frac{1}{2}$AC•BF,
∴BF=$\frac{3×4}{5}$=2.4,
∴CF=$\sqrt{B{C}^{2}-B{F}^{2}}$=$\sqrt{{3}^{2}-2.{4}^{2}}$=1.8,
∴CD=3.6,即t=3.6.
綜上所述:當運動時間t為2.5或3或3.6秒時,以點C、B、D為頂點的三角形是等腰三角形.
點評 本題考查了勾股定理、等腰三角形的判定、三角形面積的計算等知識;熟練掌握勾股定理,通過進行分類討論得出結果是解決問題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 600-600$\sqrt{3}$ | B. | 600+600$\sqrt{3}$ | C. | 900-300$\sqrt{3}$ | D. | 900+300$\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com