分析 連接OB.根據(jù)等腰△OAB的兩個(gè)底角∠OAB=∠OBA、三角形的內(nèi)角和定理求得∠AOB的度數(shù),然后由圓周角定理求即可得∠C的度數(shù).
解答 解:連接OB.
在△OAB中,OA=OB(⊙O的半徑),
∴∠OAB=∠OBA(等邊對等角);
又∵∠OAB=20°,
∴∠OBA=20°;
∴∠AOB=180°-2×20°=140°;
而∠C=$\frac{1}{2}$∠AOB(同弧所對的圓周角是所對的圓心角的一半),
∴∠C=70°,
故答案是:70.
點(diǎn)評 本題主要考查了三角形的內(nèi)角和定理、圓周角定理.解答此類題目時(shí),經(jīng)常利用圓的半徑都相等的性質(zhì),將圓心角置于等腰三角形中解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | △ADE∽△ABC | B. | BC=10 | ||
C. | $\frac{△ADE的周長}{△ABC的周長}$=$\frac{2}{3}$ | D. | $\frac{△ADE的面積}{四邊形DBCE的面積}$=$\frac{4}{21}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | p=3,q=1 | B. | p=-3,q=-9 | C. | p=0,q=0 | D. | p=-3,q=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com