分析 (1)根據垂直定義求出∠BEC=∠ACB=∠ADC,根據等式性質求出∠ACD=∠CBE,根據AAS證明△BCE≌△CAD;
(2)根據全等三角形的對應邊相等得到AD=CE,BE=CD,利用DE=CE-CD,即可解答.
解答 解:(1)∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠BEC=∠ACB=∠ADC=90°,
∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
在△BCE和△CAD中,
$\left\{\begin{array}{l}{∠ADC=∠BEC}\\{∠ACD=∠CBE}\\{AC=BC}\end{array}\right.$,
∴△BCE≌△CAD;
(2)∵△BCE≌△CAD,
∴AD=CE,BE=CD,
∴DE=CE-CD=AD-BE=25-8=17(cm).
點評 本題考查了全等三角形的性質和判定,垂線的定義等知識點的應用,解此題的關鍵是推出證明△ADC和△CEB全等的三個條件.
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | y=17(x+50)2+2016 | B. | y=17(x-50)2+2016 | C. | y=-17(x+50)2+2016 | D. | y=-17(x-50)2-2016 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com