分析 先利用“SAS”證明△AMK≌△BKN得到∠AKM=∠BNK,再利用三角形外角性質得到∠B=∠MKN=44°,然后根據三角形內角和定理計算∠P的度數.
解答 解:∵PA=PB,
∴∠A=∠B,
在△AMK和△BKN中
$\left\{\begin{array}{l}{AM=BK}\\{∠A=∠B}\\{AK=BN}\end{array}\right.$,
∴△AMK≌△BKN,
∴∠AKM=∠BNK,
∵∠AKN=∠B+∠BNK,
即∠AKM+∠MKN=∠B+∠BNK,
∴∠B=∠MKN=44°,
∴∠P=180°-2×44°=92°.
故答案為92°.
點評 本題考查了全等三角形的判定與性質:全等三角形的判定是結合全等三角形的性質證明線段和角相等的重要工具.在判定三角形全等時,關鍵是選擇恰當的判定條件.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | a12=( )3 | B. | a12=( )4 | C. | a12=( )2 | D. | a12=( )6 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com