分析 (1)由平行四邊形的性質得出AD∥BC證出∠D=∠PCF,由ASA證明△ADF≌△PCF即可;
(2)作EM⊥AP于M,求出∠AEM=30°,得出AM=$\frac{1}{2}$AE=1,由勾股定理得出EM=$\sqrt{3}$AM=$\sqrt{3}$,由全等三角形的性質得出PF=AF=4,證出PM=AP-AM=7,再由勾股定理即可得出PE的長.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,∴∠D=∠PCF,
在△ADF和△PCF中,$\left\{\begin{array}{l}{∠D=∠PCF}&{\;}\\{DF=CF}&{\;}\\{∠AFD=∠PFC}&{\;}\end{array}\right.$,
∴△ADF≌△PCF(ASA);
(2)解:作EM⊥AP于M,如圖所示:
∵∠EAF=60°,
∴∠AEM=90°-60°=30°,
∴AM=$\frac{1}{2}$AE=1,
∴EM=$\sqrt{3}$AM=$\sqrt{3}$,
由(1)得:△ADF≌△PCF,
∴PF=AF=4,
∴AP=8,
∴PM=AP-AM=7,
∴PE=$\sqrt{E{M}^{2}+P{M}^{2}}$=$\sqrt{(\sqrt{3})^{2}+{7}^{2}}$=2$\sqrt{13}$.
點評 本題考查了平行四邊形的性質、全等三角形的判定與性質、直角三角形的性質、勾股定理等知識;熟練掌握平行四邊形的性質和勾股定理,證明三角形全等是解決問題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 8 | B. | 21 | C. | 14 | D. | 7 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com