分析 (1)由勾股定理的逆定理即可得出△ABC是直角三角形;
(2)由△ABC的面積求出CH,得出AC+BC<CH+AH+BH,即可得出結(jié)果.
解答 解:(1)△ABC是直角三角形;理由如下:
∴AC2+BC2=1602+1202=40000,AB2=2002=40000,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,∠ACB=90°;
(2)甲方案所修的水渠較短;理由如下:
∵△ABC是直角三角形,
∴△ABC的面積=$\frac{1}{2}$AB•CH=$\frac{1}{2}$AC•BC,
∴CH=$\frac{AC•BC}{AB}$=$\frac{160×120}{200}$=96(m),
∵CH⊥AB,
∴∠AHC=90°,
∴AH=$\sqrt{A{C}^{2}-C{H}^{2}}$=$\sqrt{16{0}^{2}-9{6}^{2}}$=128(m),
∴BH=AB-AH=72m,
∵AC+BC=160m+120m=280m,CH+AH+BH=96m+200m=296m,
∴AC+BC<CH+AH+BH,
∴甲方案所修的水渠較短.
點(diǎn)評(píng) 本題考查了勾股定理的應(yīng)用、勾股定理的逆定理、三角形面積的計(jì)算;熟練掌握勾股定理,由勾股定理的逆定理證出△ABC是直角三角形是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 相切 | B. | 相離 | C. | 相交 | D. | 相切或相交 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com