A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 根據已知條件得到△BCD是等腰直角三角形,由等腰直角三角形的性質得到BD=CD,由BE平分∠ABC,得到∠ABE=22.5°,根據三角形的內角和得到∠A=67.5°;故①正確;根據余角得到性質得到∠DBF=∠ACD,根據全等三角形的性質得到AD=DF,故②正確;根據BE平分∠ABC,且BE⊥AC于E,得到∠ABE=∠CBE,∠AEB=∠CEB=90°,根據全等三角形的性質得到AE=CE=$\frac{1}{2}$AC,求得BE⊥AC,由于△BCD是等腰直角三角形,H是BC邊的中點,得到DH⊥BC,故④正確;推出DH不平行于AC,于是得到BE≠2BG,故③錯誤.
解答 解:∵∠ABC=45°,CD⊥AB于D,
∴△BCD是等腰直角三角形,
∴BD=CD,
∵BE平分∠ABC,
∴∠ABE=22.5°,
∴∠A=67.5°;故①正確;
∵CD⊥AB于D,BE⊥AC于E,
∴∠DBF+∠A=90°,∠ACD+∠A=90°,
∴∠DBF=∠ACD,
在△BDF與△CDA中,
$\left\{\begin{array}{l}{∠DBF=∠ACD}\\{BD=CD}\\{∠BDF=∠CDA=90°}\end{array}\right.$,
∴△BDF≌△CDA(ASA),
∴AD=DF,故②正確;
∵BE平分∠ABC,且BE⊥AC于E,
∴∠ABE=∠CBE,∠AEB=∠CEB=90°,
∴在△ABE與△CBE中,
$\left\{\begin{array}{l}{∠ABE=∠CBE}\\{BE=BE}\\{∠AEB=CEB=90°}\end{array}\right.$,
∴△ABE≌△CBE(ASA),
∴AE=CE=$\frac{1}{2}$AC,
∴BE⊥AC,
∵△BCD是等腰直角三角形,H是BC邊的中點,
∴DH⊥BC,故④正確;
∴DH不平行于AC,
∵BH=CH,∴BG≠EG;
∴BE≠2BG,故③錯誤.
故選C.
點評 本題考查了等腰直角三角形的判定與性質,角平分線的性質,全等三角形的判定與性質,仔細分析圖形并熟練掌握各性質是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 6 | B. | $\frac{15}{2}$ | C. | $\frac{21}{2}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 4 | D. | $\sqrt{91}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com