日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

5.如圖,AB為半圓O的直徑,C為半圓上一點(diǎn),∠AOC=60°,點(diǎn)P在AB的延長(zhǎng)線上,且PB=BO=3cm.連接PC交半圓于點(diǎn)D,過(guò)P作PE⊥PA交AD的延長(zhǎng)線于點(diǎn)E,求PE長(zhǎng).

分析 先求出∠PDE=30°,再判斷出∠BDE=∠BPE=90°,進(jìn)而得出∠BDE+∠BPE=180°,即可得出點(diǎn)B,P,E,D四點(diǎn)共圓,最后在直角三角形BPE中,用三角函數(shù)值即可求出PE.

解答 解:如圖,連接BD,BE,
∵∠AOC=60°,
∴∠ADC=∠PDE=$\frac{1}{2}$∠AOC=30°,
∵AB是⊙O的直徑,
∴∠ADB=∠BDE=90°,
∵PE⊥PA,
∴∠BPE=90°,
∴∠BDE=∠BPE=90°,
∴∠BDE+∠BPE=180°,
∴點(diǎn)B,P,E,D四點(diǎn)共圓,
∴∠PBE=∠PDE=30°,
在Rt△BPE中,tan∠PBE=$\frac{PE}{PB}$,
∴tan30°=$\frac{PE}{3}$=$\frac{\sqrt{3}}{3}$,
∴PE=$\sqrt{3}$.

點(diǎn)評(píng) 此題是四點(diǎn)共圓,主要考查了同弧所對(duì)圓周角與圓心角的關(guān)系,四點(diǎn)共圓,銳角三角函數(shù)的定義,解本題的關(guān)鍵判斷出點(diǎn)B,P,E,D四點(diǎn)共圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.關(guān)于一元二次方程ax2=b(ab>0)的兩個(gè)根分別是m+3和-1,則$\frac{a}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,兩圓圓心相同,大圓的弦AB與小圓相切,若圖中陰影部分的面積是16π,則AB的長(zhǎng)為8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,拋物線y=-(x-1)2+m經(jīng)過(guò)E(2,3),與x軸交于A、B兩點(diǎn)(A在B的左側(cè)).
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸與x軸的交于點(diǎn)是H,點(diǎn)F是AE中點(diǎn),連接FH.求線段FH的長(zhǎng);
(3)P為直線AE上方拋物線上的點(diǎn).當(dāng)△AEP的面積最大時(shí).求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,拋物線與x軸交于A,B兩點(diǎn),點(diǎn)B坐標(biāo)是(3,0),與y軸交于點(diǎn)C,頂點(diǎn)D的坐標(biāo)是(1,-4),對(duì)稱軸與x軸交于點(diǎn)E
(1)求拋物線的解析式;
(2)判斷△AOC與△BCD是否相似?并證明你的結(jié)論;
(3)在對(duì)稱軸右側(cè)上找點(diǎn)M,過(guò)點(diǎn)M作MN⊥CD,交直線CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若a,b,c均為非零實(shí)數(shù),且a+b+c=abc=a3,則ab+bc+ca的最小值為( 。
A.6B.8C.9D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在四邊形ABCD中,連接對(duì)角線AC、BD,AB=BC,DC=6,AD=9,且∠ABC=2∠ADC=60°,則BD=3$\sqrt{13}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.對(duì)于有理數(shù)a,b,定義a⊙b=3a+2b,則(x+y)⊙(x-y)化簡(jiǎn)后得5x+y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在進(jìn)行垂徑定理的證明教學(xué)中,老師設(shè)計(jì)了如下活動(dòng):先讓同學(xué)們?cè)趫A中作了一條直徑MN,然后任意作了一條弦(非直徑),如圖1,接下來(lái)老師提出問(wèn)題:在保證弦AB長(zhǎng)度不變的情況下,如何能找到它的中點(diǎn)?
在同學(xué)們思考作圖驗(yàn)證后,小華說(shuō)了自己的一種想法:只要將弦AB與直徑MN保持垂直關(guān)系,如圖2,它們的交點(diǎn)就是弦AB的中點(diǎn).請(qǐng)你說(shuō)出小華此想法的依據(jù)是等腰三角形三線合一定理.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产精品久久精品 | 亚洲久久 | 午夜午夜精品一区二区三区文 | 国产美女视频黄a视频免费 国产美女在线播放 | 亚洲精选一区二区 | 国产精品久久久 | 成人在线看片 | 国产日韩欧美精品一区 | 欧美日韩国产成人 | 国产精品资源在线 | 欧美一级小视频 | 国产高清在线精品一区二区三区 | 久久国产成人午夜av影院宅 | 一区二区三区在线播放 | 久久成人免费视频 | 久久韩剧网 | 久久国产乱子伦精品免费午夜,浪货好紧 | 精品久久久久久一区二区 | 国产成人在线视频观看 | 日韩在线一区二区 | 超碰免费在线 | 欧美日韩二区三区 | 91精品国产综合久久蜜臀 | 综合二区 | 久久久999国产| 国产一区二区电影 | 91精品国产一区二区三区 | 成人一区二区三区视频 | 久久伊| 一级毛片视频 | 欧美日韩成人在线 | 欧美精品久久久 | 久久精品欧美一区二区三区不卡 | 九九久久久 | 精品在线播放 | 在线播放黄| www.日韩大片 | 精品国产乱码久久久久久闺蜜 | 国产情侣自拍啪啪 | 电影一区二区在线观看 | 久久美女视频 |