分析 (1)根據SAS證明△ADC≌△A′DC,根據△ADC≌△A′DC,得出DA′=DA,∠CA′D=∠A=60°,得∠CDA′=∠CDA=75°,得∠BDA′=30°=∠B,則DA′=BA′,BA′=AD,從而得出BC=AC+AD.
(2)在AB上截取AE=AD,連接CE,先證明△ADC≌△AEC,得出AE=AD=9,CE=CD=10=BC,過點C作CF⊥AB于點F,設EF=BF=x;在Rt△CFB和Rt△CFA中,根據勾股定理求出x,即可得出結果.
解答 解:(1)BC=AC+AD;
證明:如圖2,∵CD平分∠ACB,
∴∠ACD=∠A′CD,
在△ADC和△A′DC中,
$\left\{\begin{array}{l}{CA′=CA}\\{∠ACD=∠A′CD}\\{CD=CD}\end{array}\right.$,
∴△ADC≌△A′DC(SAS);
∴DA′=DA,∠CA′D=∠A=60°,
∵∠ACB=90°,
∴∠B=90°-∠A=30°,
∵∠CA′D=∠B+∠BDA′,
∴∠BDA′=30°=∠B,
∴DA′=BA′,
∴BA′=AD,
∴BC=CA′+BA′=AC+AD;
(2)如圖3,在AB上截取AE=AD,連接CE,
∵AC平分∠BAD,
∴∠DAC=∠EAC.
在△AEC和△ADC中,
$\left\{\begin{array}{l}{CA′=CA}\\{∠DAC=∠EAC}\\{AC=AC}\end{array}\right.$,
∴△ADC≌△AEC(SAS),
∴AE=AD=9,CE=CD=10=BC,
如圖,過點C作CF⊥AB于點F,
∴EF=BF,
設EF=BF=x.
在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2-BF2=102-x2,
在Rt△CFA中,∠CFA=90°,由勾股定理得CF2=AC2-AF2=172-(9+x)2.
∴102-x2=172-(9+x)2,
解得:x=6,
∴AB=AE+EF+FB=9+6+6=21,
∴AB的長為21.
點評 本題屬于三角形綜合題,主要考查了全等三角形的判定與性質、勾股定理、等腰三角形的判定與性質的綜合應用,解題時需要通過作輔助線構造全等三角形,根據全等三角形的對應邊相等才能得出結果.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com