分析 先根據(jù)勾股定理求出BD的長(zhǎng)度,再根據(jù)勾股定理的逆定理判斷出△BCD的形狀,再利用三角形的面積公式求解即可.
解答 解:連接BD,如圖所示:
∵∠A=90°,AB=4,AD=3,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=5,
在△BCD中,
BD2+CD2=25+144=169=BC2,
∴△BCD是直角三角形,
∴S四邊形ABCD=$\frac{1}{2}$AB•AD+$\frac{1}{2}$BD•CD,
=$\frac{1}{2}$×3×4+$\frac{1}{2}$×5×12,
=36.
答:四邊形ABCD的面積是36.
點(diǎn)評(píng) 本題考查的是勾股定理的逆定理及三角形的面積,能根據(jù)勾股定理的逆定理判斷出△BCD的形狀是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AB>AC | B. | AB=AC | C. | AB<AC | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com