分析 (1)由于反比例函數的值小于一次函數的值,故反比例函數需要在一次函數的圖象的下方,根據圖象即可求出x的范圍;
(2)過點A作AC⊥AB交雙曲線于點C,交y軸于點D,過點A作AE⊥y軸于點E,根據條件求出直線AC的解析式,然后聯立直線AC與雙曲線即可求出點C的坐標
解答 解:(1)由$\left\{\begin{array}{l}{y=x+2}\\{y=\frac{3}{x}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-3}\\{y=-1}\end{array}\right.$
解得A(1,3),B(-3,-1)
當反比例函數的值小于一次函數的值-3<x<0或x>1;
(2)過點A作AC⊥AB交雙曲線于點C,交y軸于點D,
過點A作AE⊥y軸于點E,
令x=0代入y=x+2,
∴y=2,
∴G(0,2)
令y=0代入y=x+2,
∴x=-2,
∴F(-2,0)
∴OF=OG
∴∠GFO=45°,
∴∠AGE=45°,
∴△DAG是等腰直角三角形,
∵A(1,3)
∴OE=3,AE=1,
∴AE=DE=1,
∴OD=OE+DE=4,
∴D(0,4)
設直線AC的解析式為y=mx+n,
把(0,4)和(1,3)代入y=mx+n
∴$\left\{\begin{array}{l}{4=n}\\{3=m+n}\end{array}\right.$
解得:$\left\{\begin{array}{l}{m=-1}\\{n=4}\end{array}\right.$
∴y=-x+4,
聯立$\left\{\begin{array}{l}{y=-x+4}\\{y=\frac{3}{x}}\end{array}\right.$
解得:$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$
∴點C(3,1).
點評 本題考查反比例函數的綜合問題,解題的關鍵是聯立兩函數的解析式求出交點坐標,本題屬于中等題型.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | b | B. | -b | C. | -2a+b | D. | 2a-b |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com