分析 (1)根據(jù)等腰直角三角形的性質(zhì)可以得出△ABE≌△ACD;
(2)由△ABE≌△ACD,即可得出結(jié)論.
解答 (1)解:△ABE≌△ACD;理由如下:
∵△ABC和△ADE是等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠EAC=∠DAE+∠EAC,
∴∠BAE=∠CAD,
在△ABE和△ACD中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠BAE=∠CAD}&{\;}\\{AE=AD}&{\;}\end{array}\right.$,
∴△ABE≌△ACD(SAS)
(2)證明:由(1)得:△ABE≌△ACD,
∴DC=BE.
點(diǎn)評(píng) 本題考查了等腰直角三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,垂直的判定的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | α=30°,β=30° | B. | α=105°,β=30° | C. | α=30°,β=105° | D. | α=105°,β=45° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
組別 | 學(xué)習(xí)時(shí)間x(h) | 頻數(shù)(人數(shù)) |
A | 0<x≤1 | 8 |
B | 1<x≤2 | 24 |
C | 2<x≤3 | 32 |
D | 3<x≤4 | n |
E | 4小時(shí)以上 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2{x^2}}}{x}$ | B. | a+b | C. | $\frac{1}{2x+1}$ | D. | $\frac{2x-2}{x-1}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 40°50′=40.5° | |
B. | 若線段AP=BP,則P一定是AB中點(diǎn) | |
C. | 若∠AOC=$\frac{1}{2}$∠AOB,則OC是∠AOB的平分線 | |
D. | 連結(jié)兩點(diǎn)的線段的長(zhǎng)度叫做兩點(diǎn)之間的距離 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com