分析 (1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據全等三角形的性質得到EM=EH,DM=DH,等量代換得到AM=CH,根據勾股定理即可得到結論;
(2)如圖2,根據菱形的性質得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質得到∠EDG=60°,推出△DAE≌△DCG,根據全等三角形的性質即可得到結論.
解答 解:(1)EH2+CH2=AE2,
如圖1,過E作EM⊥AD于M,
∵四邊形ABCD是菱形,
∴AD=CD,∠ADE=∠CDE,
∵EH⊥CD,
∴∠DME=∠DHE=90°,
在△DME與△DHE中,
$\left\{\begin{array}{l}{∠DME=∠DHE}\\{∠MDE=∠HDE}\\{DE=DE}\end{array}\right.$,
∴△DME≌△DHE,
∴EM=EH,DM=DH,
∴AM=CH,
在Rt△AME中,AE2=AM2+EM2,
∴AE2=EH2+CH2;
故答案為:EH2+CH2=AE2;
(2)如圖2,
∵菱形ABCD,∠ADC=60°,
∴∠BDC=∠BDA=30°,DA=DC,
∵EH⊥CD,
∴∠DEH=60°,
在CH上截取HG,使HG=EH,
∵DH⊥EG,∴ED=DG,
又∵∠DEG=60°,
∴△DEG是等邊三角形,
∴∠EDG=60°,
∵∠EDG=∠ADC=60°,
∴∠EDG-∠ADG=∠ADC-∠ADG,
∴∠ADE=∠CDG,
在△DAE與△DCG中,
$\left\{\begin{array}{l}{DA=DC}\\{∠ADE=∠CDG}\\{DE=DG}\end{array}\right.$,
∴△DAE≌△DCG,
∴AE=GC,
∵CH=CG+GH,
∴CH=AE+EH.
點評 本題考查了全等三角形的判定和性質,菱形的性質,旋轉的性質,等邊三角形的判定和性質,正確的作出輔助線是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com