分析 連接BC、BD,由正方形的性質(zhì)得出∠BCD=∠QOP,由勾股定理得:OP=BC=$\sqrt{2}$,證出$\frac{OP}{CD}=\frac{QO}{BC}=\frac{\sqrt{2}}{1}$,得出△OPQ∽△CDB即可.
解答 解:與△OPQ相似的是△BCD;理由如下:
連接BC、BD,如圖所示:
則∠BCD=90°+45°=135°=∠QOP,
由勾股定理得:OP=BC=$\sqrt{2}$,
∵OQ=2,CD=1,
∴$\frac{OP}{CD}=\frac{QO}{BC}=\frac{\sqrt{2}}{1}$,
∴△OPQ∽△CDB;
故答案為:△CDB.
點(diǎn)評(píng) 本題考查了相似三角形的判定定理、正方形的性質(zhì)以及勾股定理;熟練掌握相似三角形的判定定理和勾股定理是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 處于中間位置的數(shù)為這組數(shù)的中位數(shù) | |
B. | 中間兩個(gè)數(shù)的平均數(shù)為這組數(shù)的中位數(shù) | |
C. | 想要了解一批電磁爐的使用壽命,適合采用全面調(diào)查的方法 | |
D. | 公司員工月收入的眾數(shù)是3500元,說明該公司月收入為3500元的員工最多 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com