分析 連接AC、CD,由勾股定理求出AE=2,AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=3,由圓周角定理得出∠ACD=90°,∠B=∠D,證明△ABE∽△ADC,得出對應邊成比例,即可得出AD的長.
解答 解:連接AC、CD,如圖所示:
∵AE⊥BC,
∴∠AEB=∠AEC=90°,
∴AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=$\sqrt{{5}^{2}-21}$=2,
∴AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=$\sqrt{{2}^{2}+5}$=3,
∵AD為⊙O的直徑,
∴∠ACD=90°=∠AEB,
又∵∠B=∠D,
∴△ABE∽△ADC,
∴$\frac{AE}{AC}=\frac{AB}{AD}$,即$\frac{2}{3}=\frac{5}{AD}$,
解得:AD=7.5.
點評 本題考查了圓周角定理、勾股定理、相似三角形的判定與性質;熟練掌握圓周角定理,證明三角形相似是解決問題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com