分析 (1)根據(jù)等腰三角形的性質(zhì)求出∠B=∠C,求出BM=CM,根據(jù)全等三角形的判定得出△DBM≌△ECM,根據(jù)全等三角形的性質(zhì)得出即可;
(2)根據(jù)三角形的中位線求出ME=$\frac{1}{2}$AB,代入求出即可.
解答 (1)證明:∵AB=AC,
∴∠B=∠C,
∵M是BC的中點,
∴BM=CM,
在△DBM和△ECM中,
$\left\{\begin{array}{l}{BM=CM}\\{∠B=∠C}\\{BD=CE}\end{array}\right.$,
∴△DBM≌△ECM(SAS),
∴MD=ME;
(2)解:∵M是BC的中點,D為AB的中點,
∴ME=$\frac{1}{2}$AB,
∵AB=10,
∴ME=5.
點評 本題考查了全等三角形的性質(zhì)和判定,三角形中位線的應(yīng)用,能求出△DBM≌△ECM和ME=$\frac{1}{2}$AB是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 不超過3cm | B. | 3cm | C. | 5cm | D. | 不少于5cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com