A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
分析 首先利用已知條件可證明△ADE是等腰三角形,根據等腰三角形“三線合一”的性質得出DE=2DG,而在Rt△ADG中,由勾股定理可求得DG的值,即可求得DE的長;然后,證明△ADE∽△BFE,再分別求出△ADE的面積,然后根據面積比等于相似比的平方即可得到答案.
解答 解:∵DE平分∠ADC,
∴∠ADE=∠CDE;
又∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠ADE=∠CDF=∠AED,
∴AD=AE=6,
∵AG⊥DE,垂足為G,
∴DE=2DG.
在Rt△ADG中,∵∠AGD=90°,AD=6,AG=4$\sqrt{2}$,
∴DG=$\sqrt{A{D}^{2}-A{G}^{2}}$=2,
∴DE=2DG=4;
∴S△ADE=$\frac{1}{2}$DE•AG=$\frac{1}{2}$×4×4$\sqrt{2}$=8$\sqrt{2}$.
∵AE=6,AB=DC=9,
∴BE=AB-AE=9-6=3,
∴AE:BE=6:3=2:1.
∵AD∥FC,
∴△ADE∽△BFE,
∴S△ADE:S△BFE=(AE:BE)2=4:1,
則S△BEF=$\frac{1}{4}$S△ADE=2$\sqrt{2}$.
故選B.
點評 本題考查了平行四邊形的性質,相似三角形的判定與性質,勾股定理等知識的掌握程度和靈活運用能力,同時也體現了對數學中的數形結合思想的考查,難度適中.
科目:初中數學 來源: 題型:選擇題
A. | 3π或4π | B. | $\frac{3}{π}$或$\frac{4}{π}$ | C. | $\frac{6}{π}$或$\frac{8}{π}$ | D. | $\frac{9}{π}$或$\frac{16}{π}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 直線x=-$\frac{1}{3}$ | B. | 直線x=-5 | C. | 直線x=3 | D. | 直線x=5 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | a=3,b=5,c=7 | B. | a=2,b=2,c=$2\sqrt{2}$ | C. | a=$2\sqrt{3}$,b=$3\sqrt{2}$,c=$3\sqrt{10}$ | D. | a=$\sqrt{2}$,b=$\sqrt{3}$,c=$\sqrt{6}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com