分析 (1)根據直角三角形全等的判定方法HL易證得△ABD≌△CAE,可得∠DAB=∠ACE,再根據三角形內角和定理即可證得結論;
(2)與(1)同理結論仍成立.
解答 (1)解:
∵BD⊥DE于D,CE⊥DE于E,
∴∠ADB=∠CEA=90°,
在Rt△ADB和Rt△CEA中,
$\left\{\begin{array}{l}{AB=CA}\\{AD=CE}\end{array}\right.$
∴Rt△ABD≌Rt△CAE(HL),
∴∠DAB=∠ACE.
又∵∠ACE+∠CAE=90°,
∴∠DAB+∠CAE=90°
∴∠BAC=90°,
即AB⊥AC,
故答案為:AB⊥AC;
(2)成立.
證明如下:
∵BD⊥DE于D,CE⊥DE于E,
∴∠ADB=∠CEA=90°,
在Rt△ADB和Rt△CEA中,
$\left\{\begin{array}{l}{AB=CA}\\{AD=CE}\end{array}\right.$
∴Rt△ABD≌Rt△CAE(HL),
∴∠DAB=∠ACE.
又∵∠ACE+∠CAE=90°,
∴∠DAB+∠CAE=90°
∴∠BAC=90°,
即AB⊥AC
點評 本題主要考查全等三角形的判定和性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(對應角相等、對應邊相等)是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com