分析 先根據正方形的性質得到∠ABD=90°,AB=DB,再根據等角的余角相等得到∠CAB=∠DBE,則可根據“AAS”判斷△ABC≌△BDE,于是有AC=BE,然后利用勾股定理得到DE2+BE2=BD2,代換后有ED2+AC2=BD2,根據正方形的面積公式得到S1=AC2,S2=DE2,BD2=1,所以S1+S2=1,利用同樣方法可得到S3+S4=3,通過計算可得到S1+S2+S3+S4=1+3=4.
解答 解:如圖,∵圖中的四邊形為正方形,
∴∠ABD=90°,AB=DB,
∴∠ABC+∠DBE=90°,
∵∠ABC+∠CAB=90°,
∴∠CAB=∠DBE,
在△ABC和△BDE中,
$\left\{\begin{array}{l}{∠ACB=∠BED}\\{∠CAB=∠EBD}\\{AB=BD}\end{array}\right.$,
∴△ABC≌△BDE(AAS),
∴AC=BE,
∵DE2+BE2=BD2,
∴ED2+AC2=BD2,
∵S1=AC2,S2=DE2,BD2=1,
∴S1+S2=1,
同理可得S3+S4=3,
∴S1+S2+S3+S4=1+3=4.
故答案為4.
點評 本題考查了全等三角形的判定與性質、也考查了勾股定理和正方形的性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com