如圖,Rt△ABC中,∠A=90°,AD⊥BC于點D,若BD:CD=3:2,則tanB=( )
A. B.
C.
D.
D【考點】相似三角形的判定與性質;銳角三角函數的定義.
【分析】首先證明△ABD∽△ACD,然后根據BD:CD=3:2,設BD=3x,CD=2x,利用對應邊成比例表示出AD的值,繼而可得出tanB的值.
【解答】解:在Rt△ABC中,
∵AD⊥BC于點D,
∴∠ADB=∠CDA,
∵∠B+∠BAD=90°,∠BAD+∠DAC=90°,
∴∠B=∠DAC,
∴△ABD∽△CAD,
∴=
,
∵BD:CD=3:2,
設BD=3x,CD=2x,
∴AD==
x,
則tanB==
=
.
故選D.
【點評】本題考查了相似三角形的判定與性質及銳角三角函數的定義,難度一般,解答本題的關鍵是根據垂直證明三角形的相似,根據對應邊成比例求邊長.
科目:初中數學 來源: 題型:
種植能手李大叔種植了一批新品種黃瓜,為了考察這種黃瓜的生長情況,李大叔抽查了部分黃瓜株上長出的黃瓜根數,得到如圖的條形圖,則抽查的這部分黃瓜株上所結黃瓜根數的中位數和眾數分別是( )
A.13.5,20 B.15,5 C.13.5,14 D.13,14
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在平行四邊形ABCD中,E為CD上一點,連接AE、BE、BD,且AE、BD交于點F,S△DEF:S△ABF=4:25,則DE:EC=( )
A.2:3 B.2:5 C.3:5 D.3:2
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖1,AB為⊙O的直徑,C為⊙O上一點,作AD⊥CD,垂足為D.
(1)若直線CD與⊙O相切于點C,求證:△ADC∽△ACB;
(2)如果把直線CD向下平行移動,如圖2,直線CD交⊙O于C、G兩點,若題目中的其他條件不變,tan∠DAC=,AB=10,求圓心O到GB的距離OH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,矩形OABC的兩點OA、OC分別在x軸、y軸的正半軸上,點G為矩形對角線的交點,經過點G的雙曲線y=在第一象限的圖象與BC相交于點M,交AB于N,若已知S△MBN=9,則k的值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com