分析 由BC=AC=DC知A、B、D在以C為圓心的圓上,延長AC交⊙C于點(diǎn)F,連接DF、BF,由圓周角定理知∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,證△ABE∽△DFE、△ADE∽△BFE得$\frac{AB}{DF}$=$\frac{AE}{DE}$、$\frac{AD}{BF}$=$\frac{DE}{EF}$,從而由tan∠ABD•tan∠ADB=tan∠AFD•tan∠AFB=$\frac{AD}{DF}$•$\frac{AB}{BF}$=$\frac{AD}{BF}$•$\frac{AB}{DF}$=$\frac{AE}{DE}$•$\frac{DE}{EF}$=$\frac{AE}{EF}$可得答案.
解答 解:∵BC=AC=DC,
∴點(diǎn)A、B、D在以C為圓心的圓上,
如圖所示,延長AC交⊙C于點(diǎn)F,連接DF、BF、
則∠ADF=∠ABF=90°,∠ABD=∠AFD、∠ADB=∠AFB,
∵∠AEB=∠DEF、∠AED=∠BEF,
∴△ABE∽△DFE,△ADE∽△BFE,
∴$\frac{AB}{DF}$=$\frac{AE}{DE}$、$\frac{AD}{BF}$=$\frac{DE}{EF}$,
則tan∠ABD•tan∠ADB=tan∠AFD•tan∠AFB
=$\frac{AD}{DF}$•$\frac{AB}{BF}$
=$\frac{AD}{BF}$•$\frac{AB}{DF}$
=$\frac{AE}{DE}$•$\frac{DE}{EF}$
=$\frac{AE}{EF}$,
設(shè)AE=CE=x,則AC=CF=2x,
∴AF=4x,
∴EF=AF-AE=3x,
則tan∠ABD•tan∠ADB=$\frac{AE}{EF}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點(diǎn)評 本題主要考查圓周角定理、相似三角形的判定與性質(zhì)及三角函數(shù)的定義,根據(jù)圓周角定理證得兩對三角形相似是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
生產(chǎn)量與計劃量的差值 | +5 | -2 | -4 | +13 | -10 | +14 | -9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 52° | B. | 58° | C. | 60° | D. | 64° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com