A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 4 |
分析 作弦心距OD,先根據(jù)已知求出∠BOC=120°,由等腰三角形三線合一的性質(zhì)得:∠DOC=$\frac{1}{2}$∠BOC=60°,利用30°角所對(duì)的直角邊是斜邊的一半可求得OD的長(zhǎng),根據(jù)勾股定理得DC的長(zhǎng),最后利用垂徑定理得出結(jié)論.
解答 解∵∠BAC與∠BOC互補(bǔ),
∴∠BAC+∠BOC=180°,
∵∠BAC=$\frac{1}{2}$∠BOC,
∴∠BOC=120°,
過(guò)O作OD⊥BC,垂足為D,
∴BD=CD,
∵OB=OC,
∴OB平分∠BOC,
∴∠DOC=$\frac{1}{2}$∠BOC=60°,
∴∠OCD=90°-60°=30°,
在Rt△DOC中,OC=2,
∴OD=1,
∴DC=$\sqrt{3}$,
∴BC=2DC=2$\sqrt{3}$,
故選B.
點(diǎn)評(píng) 本題考查了圓周角定理、垂徑定理及等腰三角形三線合一的性質(zhì),熟練掌握垂徑定理是關(guān)鍵,本題中利用圓周角定理中圓周角與圓心角的關(guān)系得出角的度數(shù),從而得到△ODC是30°的直角三角形,根據(jù)30°角所對(duì)的直角邊是斜邊的一半得到OD的長(zhǎng),從而得出弦BC的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com