分析 (1)首先證明四邊形ABED是平行四邊形,推出DE=AB,推出$\overrightarrow{DE}$=$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{b}$,$\overrightarrow{DC}$=$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$.
(2)由△DFC∽△BAC,推出$\frac{DC}{BC}$=$\frac{CF}{CA}$=$\frac{1}{2}$,求出BC,在Rt△BAC中,∠BAC=90°,根據(jù)AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=$\sqrt{{6}^{2}-{4}^{2}}$=2$\sqrt{5}$,由tanB=$\frac{AC}{BC}$,即可解決問題.
解答 解:∵AD∥BC,
∴∠DAC=∠ACB,
∴AC平分∠DCB,
∴∠DCA=∠ACB,
∴∠DAC=∠DCA,
∴AD=DC,
∵DE∥AB,AB⊥AC,
∴DE⊥AC,
∴AF=CF,
∴BE=CE,
∵AD∥BC,DE∥AB,
∴四邊形ABED是平行四邊形,
∴DE=AB,
∴$\overrightarrow{DE}$=$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{b}$,
∴$\overrightarrow{DC}$=$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$.
(2)∵∠DCF=∠ACB,∠DFC=∠BAC=90°,
∴△DFC∽△BAC,
∴$\frac{DC}{BC}$=$\frac{CF}{CA}$=$\frac{1}{2}$,
∵CD=AD=3,∴BC=6,
在Rt△BAC中,∠BAC=90°,
∴AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=$\sqrt{{6}^{2}-{4}^{2}}$=2$\sqrt{5}$,
∴tanB=$\frac{AC}{BC}$=$\frac{2\sqrt{5}}{4}$=$\frac{\sqrt{5}}{2}$.
點評 本題考查平面向量、梯形、解直角三角形、平行四邊形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識,屬于基礎(chǔ)題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 120° | C. | 150° | D. | 180° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com