分析 首先設(shè)⊙O的半徑是r,則OF=r,根據(jù)AO是∠EAF的平分線,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判斷出OI、CI的關(guān)系,再根據(jù)GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出EF:GH的值是多少即可.
解答 解:如圖,連接AC、BD、OF,,
設(shè)⊙O的半徑是r,
則OF=r,
∵AO是∠EAF的平分線,
∴∠OAF=60°÷2=30°,
∵OA=OF,
∴∠OFA=∠OAF=30°,
∴∠COF=30°+30°=60°,
∴FI=r•sin60°=$\frac{\sqrt{3}}{2}$r,
∴EF=$\frac{\sqrt{3}}{2}$r×2=$\sqrt{3}$r,
∵AO=2OI,
∴OI=$\frac{1}{2}$r,CI=r-$\frac{1}{2}$r=$\frac{1}{2}$r,
∴$\frac{GH}{BD}=\frac{CI}{CO}=\frac{1}{2}$,
∴GH=$\frac{1}{2}$BD=r,
∴$\frac{EF}{GH}=\frac{\sqrt{3}r}{r}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 此題主要考查了正多邊形與圓的關(guān)系、相似三角形的判斷和性質(zhì)以及特殊角的銳角三角函數(shù)值,要熟練掌握,解答此題的關(guān)鍵是要明確正多邊形的有關(guān)概念.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 9 | C. | 6 | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com