分析 先延長BP,交AC于E,根據已知條件、結合ASA易證△ABP≌△AEP,從而有BP=PE,AE=AB,∠AEB=∠ABE,易求BE=4,AE=5,那么CE=4,于是可知△BCE是等腰三角形,那么∠EBC=∠C,結合三角形外角性質可證∠ABE=2∠C.
解答 證明:延長BP,交AC于E,
∵AD平分∠BAC,BP⊥AD,
∴∠BAP=∠EAP,∠APB=∠APE,
在△ABP與△AEP中,$\left\{\begin{array}{l}{∠BAP=∠EAP}\\{AP=AP}\\{∠APB=∠APE}\end{array}\right.$,
∴△ABP≌△AEP,
∴BP=PE,AE=AB,∠AEB=∠ABE,
∴BE=BP+PE=4,AE=AB=5,
∴CE=AC-AE=9-5=4,
∴CE=BE,
∴△BCE是等腰三角形,
∴∠EBC=∠C,
又∵∠ABP=∠AEB=∠C+∠EBC,
∴∠ABP=2∠C.
點評 本題考查了全等三角形的判定和性質、等腰三角形的判定和性質、三角形外角的性質.關鍵是作輔助線,求證△BCE是等腰三角形.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 200米 | B. | 200$\sqrt{3}$米 | C. | 400米 | D. | 200($\sqrt{3}+1$)米 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com