分析 利用平行線的性質,平行線間的距離相等,可得S${\;}_{△A{O}_{n}{E}_{n}}$=S${\;}_{△D{O}_{n}{E}_{n}}$,由△DO1E1∽△DOE,推出$\frac{{S}_{△D{O}_{1}{E}_{1}}}{{S}_{△DOE}}$=($\frac{2}{3}$)2=$\frac{4}{9}$,探究規律后,利用規律即可解決問題.
解答 解:①∵OnEn∥AD,
∴S${\;}_{△A{O}_{n}{E}_{n}}$=S${\;}_{△D{O}_{n}{E}_{n}}$,
故答案為=.
②∵四邊形ABCD是菱形,
∴AB=BC=CD=AD=8,
∵∠DAB=60°,
∴△ADB和△BDC都是等邊三角形,
∴∠DCO=30°,
在Rt△DOC中,∵∠DOC=90°,∠DCO=30°,
∴OD=$\frac{1}{2}$CD=4,OC=$\sqrt{C{D}^{2}-O{D}^{2}}$=4$\sqrt{3}$,
∴S△DOC=$\frac{1}{2}$•OD•OC=$\frac{1}{2}$$•4•4\sqrt{3}$=8$\sqrt{3}$,
∵OE∥AD,OA=OC,
∴DE=EC,
∴S△DOE=$\frac{1}{2}$S△DOC=4$\sqrt{3}$,
∵OE∥AD,
∴$\frac{O{O}_{1}}{D{O}_{1}}$=$\frac{OE}{D{O}_{1}}$=$\frac{1}{2}$,
∵O1E1∥OE,
∴△DO1E1∽△DOE,
∴$\frac{{S}_{△D{O}_{1}{E}_{1}}}{{S}_{△DOE}}$=($\frac{2}{3}$)2=$\frac{4}{9}$,
∴${S}_{△D{O}_{1}{E}_{1}}$=$\frac{4}{9}$•4$\sqrt{3}$,
同理,${S}_{△D{O}_{2}{E}_{2}}$=$\frac{4}{9}$•${S}_{△D{O}_{1}{E}_{1}}$=($\frac{4}{9}$)2•4$\sqrt{3}$,
…,
∴${S}_{△D{O}_{n}{E}_{n}}$=($\frac{4}{9}$)n•4$\sqrt{3}$,
∴S${\;}_{△A{O}_{n}{E}_{n}}$=S${\;}_{△D{O}_{n}{E}_{n}}$=($\frac{4}{9}$)n•4$\sqrt{3}$.
故答案為($\frac{4}{9}$)n•4$\sqrt{3}$.
點評 本題考查菱形的性質、平行線的性質、等邊三角形的判定和性質、三角形的面積公式等知識,解題的關鍵是學會從特殊到一般的探究規律,學會利用規律解決問題.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (x-4)2=21 | B. | (x-4)2=11 | C. | (x+4)2=21 | D. | (x+4)2=11 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com