日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.如圖,四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,點M是側棱SC的中點.
(Ⅰ)求異面直線BM與CD所成角的大小;
(Ⅱ)求二面角S-AM-B的余弦值.

分析 (Ⅰ)以D為原點,DA為x軸,DC為y軸,DS為z軸,建立空間直角坐標系,利用向量法能求出異面直線BM與CD所成角.
(Ⅱ)由向量法得到$\overrightarrow{GB}⊥\overrightarrow{AM}$,$\overrightarrow{MS}⊥\overrightarrow{AM}$,從而$\left?{\overrightarrow{GB},\overrightarrow{MS}}\right>$等于二面角S-AM-B的平面角.由此能出二面角S-AM-B的余弦值.

解答 解:(Ⅰ)以D為原點,DA為x軸,DC為y軸,DS為z軸,建立空間直角坐標系,
則B($\sqrt{2}$,2,0),S(0,0,2),C(0,2,0),M(0,1,1),D(0,0,0),
$\overrightarrow{BM}$=(-$\sqrt{2}$,-1,1),$\overrightarrow{CD}$=(0,-2,0),
設異面直線BM與CD所成角為θ,
則cosθ=$\frac{|\overrightarrow{BM}•\overrightarrow{CD}|}{|\overrightarrow{BM}|•|\overrightarrow{CD}|}$=$\frac{2}{2×2}$=$\frac{1}{2}$,∴θ=60°.
∴異面直線BM與CD所成角為60°.
(Ⅱ)由 $M(0,1,1),A(\sqrt{2},0,0)$,得AM的中點$G(\frac{{\sqrt{2}}}{2},\frac{1}{2},\frac{1}{2})$,
又$\overrightarrow{GB}=(\frac{{\sqrt{2}}}{2},\frac{3}{2},-\frac{1}{2})$,$\overrightarrow{MS}=(0,-1,1)$,$\overrightarrow{AM}=(-\sqrt{2},1,1)$,
故$\overrightarrow{GB}•\overrightarrow{AM}=0$,$\overrightarrow{MS}•\overrightarrow{AM}=0$,
即$\overrightarrow{GB}⊥\overrightarrow{AM}$,$\overrightarrow{MS}⊥\overrightarrow{AM}$.
因此$\left?{\overrightarrow{GB},\overrightarrow{MS}}\right>$等于二面角S-AM-B的平面角.
$cos\left?{\overrightarrow{GB},\overrightarrow{MS}}\right>=\frac{{\overrightarrow{GB}•\overrightarrow{MS}}}{{|{\overrightarrow{GB}}||{\overrightarrow{MS}}|}}=-\frac{{\sqrt{6}}}{3}$
所以二面角S-AM-B的余弦值為$-\frac{{\sqrt{6}}}{3}$.

點評 本題考查異面直線所成角的求法,考查二在面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.如圖:已知三角形ABC,∠ACB=90°,AB在平面α內,C不在平面α內,點C在平面α內的射影為O,CA,CB與平面α所成角分別為30°,45°,CD⊥AB,D為垂足,則CD與平面α所成角60°.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.甲、乙兩人玩兒擲骰子游戲,游戲規則規定:若拋擲處的點數不少于3點,則拋擲者得1分,對方得0分,若拋擲出的點數少于3點,則拋擲者得0分,對方得1分,各次拋擲互相獨立,并規定第一次由甲拋擲,第二次由乙拋擲,第三次再由甲拋擲,依次輪換拋擲.
(Ⅰ)求前3次拋擲甲得2分且乙得1分的概率;
(Ⅱ)ξ表示前3此拋擲乙的得分,求ξ的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.如圖,在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E是線段AB上的點,且EB=1,則二面角C-DE-C1的正切值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.一袋中裝有5只球,編號為1,2,3,4,5,在袋中同時取3只,以ξ表示取出的3只球中的最大號碼,寫出隨機變量ξ的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.在△ABC中,AB=5,BC=2,∠B=60°,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值為(  )
A.5$\sqrt{3}$B.5C.-5$\sqrt{3}$D.20

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若f(x)是定義在R上的連續函數,且$\lim_{x→1}\frac{f(x)}{x-1}$=2,則f(1)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.設a、b為正數,$\frac{1}{a}$+$\frac{1}{b}$≤2$\sqrt{2}$,(a-b)2=4(ab)3,則a+b=(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x,a∈R..
(Ⅰ)若函數f(x)在區間(1,3)上單調遞減,求a的取值范圍;
(Ⅱ)當a=-1時,證明f(x)≥$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一级一级一级一级毛片 | 狠狠色综合欧美激情 | av黄色一级片| 精品久久中文字幕 | 免费a爱片猛猛 | 看片地址 | 成人久久久精品国产乱码一区二区 | 黄色网址免费大全 | 一本大道久久a久久精二百 羞羞视频在线观免费观看 国产第一区在线观看 | 欧美日韩久久久 | 亚洲精品影院 | www亚洲成人| 久草视频在线首页 | 日本精品中文字幕 | 欧美日韩精品免费 | 自拍在线| 久久精品91久久久久久再现 | 免费av中国 | 国产成人精品久久 | 欧美二三区 | 国产精品视频一区二区三区四蜜臂 | 91精品国产乱码久久蜜臀 | 日本精品一区二区三区视频 | 99精品国产一区二区 | 精品视频 | 在线观看va | 污视频免费网站观看 | 日本高清一二三 | 中文字幕在线观看网站 | 精品视频在线免费观看 | 亚洲黄色影院 | 欧美日韩成人影院 | 高清精品一区二区 | 国产91在线视频 | 三级黄视频在线观看 | 国产在线观看一区二区三区 | eeuss影院一区二区三区 | 国产中文一区 | 中文字幕av一区二区三区免费看 | 亚洲日韩中文字幕天堂不卡 | 欧美一区二区三区在线视频观看 |