A. | bf(a)≤af(b) | B. | af(b)≤bf(a) | C. | bf(a)≤f(a) | D. | af(a)≤f(b) |
分析 由已知條件令F(x)=$\frac{f(x)}{x}$,判斷出F′(x)≤0,據導函數的符號與函數單調性的關系判斷出F(x)的單調性,利用單調性判斷出F(a)與F(b)的關系,利用不等式的性質得到結論.
解答 解:∵f(x)是定義在(0,+∞)上的非負可導函數且滿足xf′(x)≤f(x),
令F(x)=$\frac{f(x)}{x}$,則F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵xf′(x)-f(x)≤0,
∴F′(x)≤0,
∴F(x)=$\frac{f(x)}{x}$在(0,+∞)上單調遞減或常函數
∵對任意的正數a、b,a<b
∴$\frac{f(a)}{a}$≥$\frac{f(b)}$,
∵任意的正數a、b,a<b,
∴af(b)≤bf(a)
故選:B.
點評 函數的導函數符號確定函數的單調性:當導函數大于0時,函數單調遞增;導函數小于0時,函數單調遞減.
科目:高中數學 來源: 題型:選擇題
A. | 0.1462 | B. | 0.1538 | C. | 0.9962 | D. | 0.8538 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
X | 1 | 2 | 3 | 4 |
P | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | p |
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com