分析 (1)根據A⊆B,建立條件關系即可求實數a的取值范圍.
(2)假設A=B,建立條件關系即可求實數a的值是否存在,即可判斷.
解答 解:(1)集合A={x|2a-1<x<3a+1},集合B={x|-1<x<4}.
∵A⊆B,
∴集合A可以分為A=∅或A≠∅兩種情況來討論:
當A=∅時,滿足題意,此時2a-1≥3a+1,解得:a≤-2;
當A≠∅時,要使A⊆B成立,需滿足$\left\{\begin{array}{l}2a-1≥-1\\ 3a+1≤4\\ 2a-1<3a+1\end{array}\right.⇒0≤a≤1$.
綜上所得,實數a的取值范圍(-∞,-2]∪[0,1].
(2)假設存在實數a,那么A=B,
則必有$\left\{\begin{array}{l}{2a-1=-1}\\{3a+1=4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=0}\\{a=1}\end{array}\right.$,
綜合得:a無解.
故不存在實數a,使得A=B.
點評 本題主要考查集合的基本運算,比較基礎.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{4\sqrt{5}}}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分必要 | B. | 充分非必要 | ||
C. | 必要非充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com